Jonathan Frankle Research Statement

I develop new experimental methods for identifying empirical properties of the neural networks we use in
practice. In my research, I have adapted neural network pruning (a technique for removing superfluous
structure from neural networks) to determine the capacity that a network needs to learn a particular task. I
have shown that practical neural networks are capable of learning just as effectively with an order of
magnitude fewer parameters than we typically use in practice, shedding new light on the nature of neural
network optimization and creating new opportunities to reduce the cost of training.

Motivation & Overview

In the rapidly growing area of deep learning, we face fundamental challenges that make it especially difficult
to show that properties hold for the neural networks that we create. We do not understand the role that
each component of a trained neural network has come to serve, denying us the scaffolding that typically
facilitates reasoning about systems. Many useful properties may only hold in practice for specific tasks and
data distributions (e.g., natural image classification) on specific architectures (e.g., ResNet) optimized in a
specific way (e.g., gradient descent); at practical scales, each of these objects defies formalization with
existing tools. The properties of a network are tightly connected to those of the training process—the
sophisticated interplay between architecture, dataset, and optimizer that determined the network’s
function and representation—yet there remain many questions about how training behaves in practice and
why it reliably produces useful networks.

However, the same complexity that poses these challenges also gives rise to important, nonobvious
properties of neural networks that, for example, threaten reliability (e.g., adversarial examples [Goodfellow
et al., 2015]) or offer new opportunities to reduce the cost of training [Frankle & Carbin, 2019]. My research
goal is to identify such properties in practical neural networks, which I believe is essential if we wish to
understand how they learn in real-world settings, enhance the efficiency of training and deploying them,
and improve our confidence in systems based on deep learning as they become increasingly ubiquitous.

My Contribution: The Lottery Ticket Hypothesis

My research provides a new understanding of the capacity that neural networks need to learn. We have long
known that practical networks are larger than necessary to represent the functions they learn: we can prune
a large fraction (typically 80-90%) of their weights after training without affecting accuracy [Le Cun et al.,
1990; Han et al., 2015]. I study whether optimization—the process of learning these functions—needs these
additional weights, even if the final representations do not. My proposed lottery ticket hypothesis [Frankle
& Carbin, 2019] states that there exist similarly small subnetworks that—from early in training—can train
on their own to the same accuracy as the full network in the same amount of time. In other words, networks
can be an order of magnitude smaller than standard practice suggests while still reaching the same accuracy.

To evaluate this hypothesis, I designed an experiment to find such subnetworks retroactively and
accumulated comprehensive evidence that they exist in standard settings for computer vision [Frankle &
Carbin, 2019; Frankle et al. 2020b]. The results overturned years of received wisdom that networks of this
size could not train effectively [Han et al., 2015; Li et al., 2017] and created a new area dedicated studying
these networks. In recognition of this contribution, my work received a best paper award at ICLR 2019.

Empiricism for Identifying Properties of Practical Deep Learning Systems

More broadly, I identify properties of neural networks by studying them empirically as would an
experimental biologist or physicist studying natural systems. This process involves posing hypotheses,
developing experiments to assess whether they hold, and rigorously evaluating them on a range of settings.
The advantage of this approach is that we can directly analyze the settings we use in practice—settings that
remain beyond the reach of our current theory. Once well-supported hypotheses are established, we are in
a stronger position to formalize these ideas. And, since we are examining practical settings, our insights
have a clearer path for improving the practical state of the art.



Technical Work

Problem Statement: How much capacity do we need to train a neural network?

Since the 1980s, we have known that it is typically possible to prune most of the parameters from trained
neural networks without affecting accuracy [Le Cun et al., 1990; Reed, 1993; Han et al., 2015; Blalock et al.,
2020]. The fact that it is possible to do so means that the networks do not need their full capacity to
represent the functions that they learn. However, until my work, it was believed that the training process
requires more capacity than does this final representation [Han et al., 2015; Li et al., 2017; Ziv & Tishby,
2017]; that is, it is necessary to train the full network before pruning. This difference has important practical
implications: pruning after training reduces the cost of using the network (inference), while pruning before
or early in training could reduce the cost of creating the network in the first place.

The Lottery Ticket Hypothesis: Finding Sparse, Trainable Neural Networks

I showed that these pruned networks can indeed be trained on their own to full accuracy. My insight was
that weights that can be pruned after training could have been pruned before training; however, to allow
these subnetworks to train effectively, each weight needs to be set to the same initial value as it received
before training. We typically initialize neural networks by sampling their weights from distributions
designed to maintain gradients of appropriate scales during backpropagation [Glorot & Bengio, 2010; He
et al., 2015]. Others had tried to train pruned networks without success, and this distributional view of
initialization was at the heart of those failures: before training, the networks were always reinitialized by
sampling a new initialization from these distributions [Han et al., 2015; Li et al, 2017].

To evaluate my claims, I developed an experiment: after pruning the network, rewind each weight back to
the initial value it had before training and then train just this subnetwork. If this subnetwork can train to
full accuracy, then it is evidence that such small, trainable networks exist. And if reinitializing this
subnetwork leads to lower accuracy, then it is evidence that the original initialization was important. On a
range of small-scale computer vision networks, I showed that this was indeed the case. The takeaway is that,
in these settings, there exist winning ticket subnetworks that have “won the initialization lottery,” making
it possible for them to train from the start to the same accuracy as the unpruned network.

Linear Mode Connectivity and the Lottery Ticket Hypothesis

In larger-scale settings, my procedure only worked when the networks were trained with learning rate
warmup (where the learning rate is gradually increased from zero to the full value over the early part of
training) [Frankle et al., 2020b]. Warmup has been established as a technique to mitigate the effects of
noise in the optimization process early in training [e.g., Goyal et al., 2018], and this observation suggested
that the early part of training might pose particular difficulties for training pruned networks.

To evaluate this hypothesis, I developed an experiment to assess a network’s sensitivity to the noise of
stochastic gradient descent (SGD - a standard optimization procedure used to train neural networks): train
two copies of the pruned network with two different samples of noise (in this case, two different random
data orders). If they reach the same linearly connected optimum, then noise must not have been large
enough to affect the outcome of training, i.e., the network is stable to noise. Otherwise, noise affected the
outcome of training, i.e., the network is unstable to noise. Pruned networks where the lottery ticket
observations held were stable to noise in this way, and those where they did not hold were unstable to noise.

Not only did this distinguish successes and failures of my procedure, but it provided a crucial insight for
finding small, trainable networks at larger scales without modifying the learning rate schedule: look for
subnetworks that are stable to noise. The success of warmup in particular suggested that noise was only a
challenge during the early part of training. To evaluate this hypothesis, I studied the stability of subnetworks
created after initialization: prune after training (just like before) and rewind the weights to their values from
iteration k > 0 (rather than their values at initialization). At an early point in training, all settings became
stable to SGD noise; moreover, accuracy improved alongside stability, culminating in stable subnetworks
that could train on their own from early in training to full accuracy.



Impact

The high-level takeaway from my research is a generalization of my original hypothesis: practical neural
networks contain smaller subnetworks capable of training to full accuracy from the point in training when
they are stable. For the smaller-scale settings in the original work, this is at initialization. For larger-scale
settings, it is early (1% to 5%) in training. Today, this rewinding procedure is the standard way to study
lottery tickets in the literature [e.g., Morcos et al., 2019], my results have been extended to a range of other
settings [Yu et al., 2019; Chen et al., 2020; Kalibhat et al., 2020], and my experiment for analyzing stability
has become a research topic in its own right [e.g., Mirzadeh et al., 2020].

By showing that training is possible without the full capacity of the network, this line of work has catalyzed
an area of deep learning dedicated to studying winning tickets and, more generally, to training pruned
networks. Dozens of papers have been published on the subject in recent conferences, for example showing
that winning tickets can transfer to new tasks [Morcos et al., 2019], proving variants of the hypothesis
[Malach et al., 2020; Pensia et al. 2020], proposing ways to find these subnetworks efficiently [Wang et al.,
2020; Tanaka et al., 2020], and suggesting other strategies for training smaller networks [Evci et al., 2020].

Future Work

Practical Applications of the Lottery Ticket Hypothesis

Although my research shows that it would have been possible to use a smaller network for much or all of
training, it has not yet delivered an efficient way to find these networks. The most important practical open
problem in this research area is developing a procedure to find these subnetworks as early in training as
possible. Doing so would create new opportunities to significantly reduce the cost of training (5x-10x if we
can also accelerate sparsity—see below). I am actively pursuing this question, starting with a rigorous
analysis of the shortcomings of existing proposals [Frankle et al., 2020c] and continuing by taking
inspiration from my ideas about the stability of training to SGD noise [Frankle et al., 2020b]. To solve this
problem, I believe we will need a to gain a better scientific understanding of how neural networks learn and
use those insights to develop new pruning methods.

Even once we have effective methods for training smaller networks, we still need to ensure that these
networks improve efficiency in practice. When pruning individual weights in an unstructured fashion, the
resulting networks contain sparse tensors. Although current-generation CPUs and GPUs do not
immediately benefit from sparsity, there is an active research area dedicated to writing libraries to
accelerate sparse neural networks on these platforms [e.g., Elsen et al., 2020] and next generation hardware
has native sparsity support (e.g., the NVIDIA A100, GraphCore IPU, and Cerebras Wafer-Scale Engine). To
ensure that my research realizes its practical potential, I intend to both build on existing work to accelerate
sparsity and to co-design pruning techniques conducive to efficient implementations on the increasingly
diverse array of hardware accelerators for deep learning.

Sparsity as a Tool for Understanding Deep Learning

My research shows that sparsity (fixing parameters to zero) can emerge earlier than previous understood
in the neural networks we train in practice: neural networks learn functions with sparse representations
and, when the right parameters are removed, they can train in a sparse fashion. These observations shed
new light on existing questions and suggest many new questions at the heart of our understanding of deep
learning. Why does sparsity emerge in the first place? Is it intrinsic to neural networks in general, or is it a
product of choices we make in practice (e.g., the nature of real-world data, the architectures we use in
practice, or implicit biases of SGD [Neyshabur et al., 2015])? Does sparsity imply that neural network
optimization occurs in a lower-dimensional subspace [Gur-Ari et al., 2018] and, if so, can we identify it?

Furthermore, why are sparse networks sensitive to initialization in ways that the dense neural networks we
typically train are not? This ties to broader questions about the role of overparameterization (where a
neural network has enough capacity to memorize the training set) in deep learning [Belkin et al., 2019; Liu



et al., 2020]. Can we only sparsify neural networks in this overparameterized regime? Is optimizing a sparse
neural network intrinsically more difficult than the dense networks, or does sparsity simply require a
different approach to initialization and optimization? With a better understanding of the emergence of
sparsity and the nature of sparse optimization problems, we may eventually be able to identify and train
sparse networks from scratch without needing to resort to pruning at all.

Empiricism for Identifying Properties of Practical Deep Learning Systems

More broadly, my research demonstrates the value of empiricism as a tool for identifying new properties of
neural networks. As my research illustrates, empiricism makes it possible to investigate questions,
behaviors, and settings that arise in practice but may be beyond the reach of existing theory. Such new
empirical observations made in practical settings can lead to well-motivated practical advances while
identifying new directions for theoretical work.

In my future research, I intend to continue to develop empirical approaches for studying practical neural
networks. My research philosophy is that, in areas where the community is competing to chase state-of-
the-art numbers, there is an opportunity to scientifically understand and systematize the properties
underlying that success [e.g., Blalock et al, 2020; Renda et al., 2020; Frankle et al., 2020c]. In general,
practical deep learning systems engineered to reach high accuracy on real-world datasets will inevitably be
complex, and it is my conviction that empiricism will be an essential tool as we seek to understand and
improve these systems amid this complexity.
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