
Jonathan Frankle Teaching Statement 

 

Teaching Philosophy 
 

My favorite teaching experiences are those where I have provided students with their first exposure to an 
entirely new topic. During my graduate career, this has ranged from teaching hundreds of students to write 
their first line of Python to introducing a handful of undergraduates and early-stage graduate students to 
my research area and the fundamentals of scientific inquiry. Doing so is both a privilege and a responsibility. 
If my enthusiasm is sufficiently contagious, my teaching could alter the course of a student’s career. This is 
also where the stakes are highest: if I leave a student underprepared or without an adequate foundation, I 
may hinder their progress even if I have kindled their interest. 

Teaching in these contexts begins with empathy: for where each individual student is coming from, 
where they hope to go, and the unique strengths and apprehensions they bring to the learning process. It 
also requires pursuing clear teaching goals while customizing the approach for the specific audience. 
For example, teaching introductory computer science to aspiring engineers (as a master’s student at 
Princeton) and creating a similar class for aspiring lawyers (as a fellow at Georgetown Law) required me to 
address precisely the same material in radically different ways to accommodate different preparation and 
inhibitions. In research, diversity of backgrounds and goals demands a unique plan for every student. 

In all cases, students will struggle at times; my job as a teacher is to ensure that struggles are productive 
opportunities for growth and that support is available to help students and avoid disillusionment. I have 
found that frequent, low-stakes milestones and assessments make it possible for me and the students 
to track their individual progress and identify trouble spots while they are easily addressable. As a partner 
in this process, I need to track my own progress: I have found collecting feedback from students on a 
frequent (e.g., weekly) basis to be a valuable way to calibrate and course correct. 

In an era of exploding computer science enrollments and remote teaching, I have experience scaling these 
strategies to classes numbering in the dozens or hundreds. Even when courses become too large for the 
instructor to get to know each student personally, students should always have a specific point of contact 
(usually a specific TA) who is equally dedicated to their success. I have experience both serving in that 
capacity and training TAs to do so. 

Few experiences are more fulfilling than accompanying a student on the first steps of an intellectual journey 
and, years later, finding out that they began a PhD, created a new area of research, started a company, or 
found ways to integrate the material they learned into an entirely different career path. In my mind, this 
means understanding what success means to each individual student and equipping them to accomplish it. 

Teaching Approach 
 

At its heart, I see teaching as the act of organizing information so that students are able to process 
and synthesize it in real-time. Although each lecture must be an engaging and well-rehearsed 
performance in its own right, the bulk of the work takes place when writing the underlying script: assessing 
the dependencies of the content to be presented, structuring the content in the proper order, organizing the 
information into intuitive abstractions, and motivating the endeavor with compelling, practical examples. 
As Shafi Goldwasser, a mentor early in my PhD, once explained to me: 

I’ve been teaching introductory cryptography since the 1980s, and we cover at least twice as much information 
now as we did then. This isn’t because the students are getting smarter: it’s because we’ve developed better 
abstractions that make it easier to reason about the material. 

I design my lectures to encourage critical thinking, active learning, and participation, even in the context of 
the large enrollments typical in introductory (and, often-times, upper-level) computer science classes. Each 
lecture begins with an open-ended warmup question designed to encourage discussion and debate while 
motivating the day’s lesson (e.g., Why does Python have types? Name one instance where you want an 
immutable value and one where you don’t. Describe two ways of initializing a neural network that would 
undoubtedly lead to a bad final model.) 



During the lecture itself, I reinforce concepts with examples and exercises, assigning students to work on 
them in pairs and soliciting student input to help me complete the solutions. Encouraging students to 
willingly participate requires creating a classroom culture from day one that enables students to 
take risks and lowers the stakes so that students feel comfortable attempting to answer questions, even 
if they aren’t absolutely certain about the answers. In this culture, interaction can help students to stay 
engaged in large lectures without creating anxiety. 

I prefer frequent, lower-stakes assessments to give students opportunities to put each week’s material 
into practice and track their progress. I view problem sets as an opportunity for additional teaching, and I 
structure them around applications I wish I had time to explore in lecture (e.g., an assignment to teach lists 
and for-loops with the conceit of finding hash-collisions, cracking passwords, and mining Bitcoin). 

In upper-level classes, I see end-of-semester projects as a valuable way to give students space for 
creativity. I have found that these projects must be managed carefully to ensure students are able to take 
full advantage of the opportunity (rather than, for example, wandering for many weeks and rushing 
something unsatisfying at the last minute). This requires support for developing ideas, clear milestones, 
and frequent feedback on progress. In short, it requires a willingness to dedicate substantial teaching 
resources to the effort, far more than for an equivalent number of structured problem sets. 

Teaching Experience 
 

Dating back to my earliest days as an undergraduate at Princeton, I have sought out ways to share my 
enthusiasm for computer science through teaching. I took full advantage of the opportunities 
available to undergraduates, serving as a grader, lab TA, and mentor to students in introductory classes 
(and receiving a departmental award for my efforts). 

I remained at Princeton for a fourth year as a master’s student, which allowed me to enter the classroom in 
a formal way. I helped to provide students with their first introduction to computer security as a TA in an 
upper-level course on the subject with more than 100 students. I held office hours, contributed to 
assignments and tests, and led a week of well-attended review sessions in the leadup to the final. My 
students rewarded my efforts, lobbying the undergraduate Engineering Council to present me with one of 
just three awards for graduate teaching that term across the entire school of engineering. The 
following term, I taught two sections (“precepts”) of the introductory computer science course, reviewing 
and enhancing the lecture material for four hours each week. To let my students speak for themselves: 

“Jonathan was so enthusiastic!” “Jonathan is the best preceptor by far.” “Precept was super helpful!!!” “Precept was 
the saving grace.” “Many of my friends, who attended other precepts, repeatedly told me that Jonathan is the best 
preceptor.” “You are the man.” “Absolute best part of the class.” “Literally a life-saver.” “THE BEST EVER!” 

The computer science department agreed, giving me another departmental teaching award for my efforts. 

After my master’s, I took a gap year to work in technology policy at Georgetown Law. My mentor, Prof. Paul 
Ohm, was a law professor with a degree in computer science. He had always been eager to teach law students 
to code with the intention of enabling them to engage more closely with technical topics in law and policy. 
Together, we developed a pilot Programming for Lawyers course that covered essentially the same content 
as the introductory course I had taught at Princeton but for an audience with entirely different goals, 
preparation, and apprehensions. For example, a frequent joke around the law center was that students 
and faculty “had become lawyers because they couldn’t do math.” In practice, they were excellent 
programmers who needed help overcoming these internalized (but unfounded) inhibitions. 

Together, we developed an entirely new curriculum from the ground up, focused on data types (e.g., strings, 
text, PDFs), examples (e.g., technology policy and “memos from the partner”), and applications (e.g., web 
scraping and text processing) that would resonate with this audience. After a pilot semester with 17 
students, the course has grown to an annual enrollment of 50-75 students at Georgetown with seven other 
law schools offering versions of the class. Although I can no longer teach it on a regular basis from MIT, I 
flew to DC every Tuesday in the spring of 2019 to teach in a visiting capacity. The course now includes a 



dozen law student TAs (who simultaneously take an intermediate Programming for Lawyers class), small 
lab sections alongside lecture, and a textbook that Prof. Ohm and I are working to publish. 

The biggest lessons from this experience have been about the work necessary to develop a new class. 
Assignments, lectures, and textbook chapters each require dozens of hours to create and years to perfect 
based on many rounds of student feedback. It has taken five years of iterative refinement to get the course 
to the point where it can be taught smoothly each year with minimal revisions. As a faculty member, I 
would be eager to make a similar long-term commitment to creating or adopting a class and 
improving it over many years, having experienced the rewards and impact of doing so first-hand. 

Advising Experience and Approach 
 

My advising philosophy is similar to my teaching philosophy: although I have a high-level curriculum and 
a set of teaching objectives in mind (namely, teaching science and research practice), the manner in which 
that manifests has to be customized for the strengths, goals, and interests of each individual 
student. At MIT, I have formally advised two undergraduate students and three master’s students. I have 
also greatly enjoyed working with many early-stage PhD students as a mentoring “second author.” 

Early on, students often struggle with creating structure for themselves: forming an answerable research 
question in an open-ended space and managing their time to make progress toward answering that question 
effectively. I have found it valuable to encourage students to produce written work-products from the very 
beginning, for example developing (and refining) research questions, formulating hypotheses, specifying 
experiments to evaluate them, and tracking results. Doing so helps students to subdivide projects into 
smaller, more manageable pieces and reinforces scientific best-practices. 

However, these general practices must be tailored to the individual student. Some students have come into 
the process with a clear question in mind but have struggled to answer it. Others are effective at answering 
questions once specified but need help finding interesting, answerable questions. I often begin working with 
a student by reading several papers together in an area, which establishes background knowledge and gives 
a student room to discover topics and questions that speak to them. 

I prefer a hands-on approach to advising, meeting with students frequently and keeping my 
(virtual) door open whenever possible. Early in my PhD, I personally experienced many times where I 
felt like I was struggling and slipping through the cracks. I strive to ensure that none of my mentees ever 
feel this way. I have found frequent check-ins (even if they are only a few minutes) to surface concerns 
sooner, help students get back on track more quickly when they are stuck, and reinforce that they should 
not hesitate to ask for support whenever needed. As students get experience and mature, they typically 
become more independent and these check-ins naturally become shorter and less frequent. 

Teaching Interests 
 

I am interested in teaching a wide variety of classes. I have a particular affinity for introductory courses 
and, with that in mind, I would be eager to teach courses in the introductory computer science and machine 
learning curricula. I would be especially keen to teach a general introduction to deep learning, including 
overviewing exciting topics of contemporary interest in such a fast-moving field. In addition, my research 
has spanned multiple application areas of deep learning and, although I am not a domain specialist in either 
of these specific topics, I would be interested in getting involved in courses on computer vision and NLP. 

At the graduate level, I am especially interested in developing a course on the foundations of deep learning 
as I see them through my empirical, scientific lens. A key aspect of this course would be codifying and 
teaching empirical research methods for machine learning. As empiricism becomes an increasingly 
important tool for studying complex machine learning systems, it is essential that we establish standards 
for rigor and educate the next generation of researchers accordingly. 

 


