
C
o
n
si
st

en
t *
Complete *

W
ell D

o
cu
m
ented*Easyt

oR

eu
se
* *

Evaluated

*
P
O
P
L
*

Ar
tifact

*
A
E
CExample-Directed Synthesis:

A Type-Theoretic Interpretation

Jonathan Frankle
Princeton University, USA
jfrankle@cs.princeton.edu

Peter-Michael Osera
Grinnell College, USA
osera@cs.grinnell.edu

David Walker
Princeton University, USA

dpw@cs.princeton.edu

Steve Zdancewic
University of Pennsylvania, USA

stevez@cis.upenn.edu

Abstract
Input-output examples have emerged as a practical and user-friendly
specification mechanism for program synthesis in many environ-
ments. While example-driven tools have demonstrated tangible im-
pact that has inspired adoption in industry, their underlying seman-
tics are less well-understood: what are “examples” and how do they
relate to other kinds of specifications? This paper demonstrates that
examples can, in general, be interpreted as refinement types. Seen
in this light, program synthesis is the task of finding an inhabitant
of such a type. This insight provides an immediate semantic inter-
pretation for examples. Moreover, it enables us to exploit decades
of research in type theory as well as its correspondence with intu-
itionistic logic rather than designing ad hoc theoretical frameworks
for synthesis from scratch.

We put this observation into practice by formalizing synthesis
as proof search in a sequent calculus with intersection and union
refinements that we prove to be sound with respect to a conventional
type system. In addition, we show how to handle negative examples,
which arise from user feedback or counterexample-guided loops.
This theory serves as the basis for a prototype implementation that
extends our core language to support ML-style algebraic data types
and structurally inductive functions. Users can also specify synthesis
goals using polymorphic refinements and import monomorphic li-
braries. The prototype serves as a vehicle for empirically evaluating
a number of different strategies for resolving the nondeterminism of
the sequent calculus—bottom-up theorem-proving, term enumera-
tion with refinement type checking, and combinations of both—the
results of which classify, explain, and validate the design choices
of existing synthesis systems. It also provides a platform for mea-
suring the practical value of a specification language that combines
“examples” with the more general expressiveness of refinements.

Categories and Subject Descriptors F.4.1 [Mathematical Logic
and Formal Languages]: Mathematical Logic—Proof Theory; I.2.2
[Artificial Intelligence]: Automatic Programming—Program Syn-
thesis

General Terms Languages, Theory

Keywords Functional Programming, Proof Search, Sequent Calcu-
lus, Program Synthesis, Type Theory, Refinement Types

1. Introduction
One of the great barriers to productivity in modern life is the rate at
which we can write programs to automate repetitive tasks. Program
synthesis—the act of generating a program from a high-level
specification of a computational problem—offers the tantalizing
prospect that much of this labor can, itself, be automated. To
make synthesis worthwhile, however, specifying a program must
be easier than simply writing it. Fortunately, in many domains,
examples are readily available and require little work to marshal
into a synthesis specification. For instance, spreadsheets already
contain data that can form the basis of examples, an observation that
Flash Fill exploits to synthesize transformations for the more than 1
billion worldwide users of Microsoft Office [14, 21]. Other research
extends these ideas to a number of domains, including ad hoc data
processing [10] and editor macro creation [19].

Yet, even with increasing industrial and academic attention de-
voted to example-directed synthesis, key theoretical questions re-
main unanswered. Most fundamentally, what exactly are “exam-
ples?” That is, how do we understand the semantics of examples as
specifications in the context of existing formal systems? An answer
to this question would do far more than satisfy academic curiosity—
it could help us understand the meta-theoretic properties of synthesis
procedures and inform the design of more efficient synthesis engines.
It would also have explanatory powers, revealing the relationships
between existing, ad hoc approaches to example-directed synthesis.

In this paper, we give such an answer, demonstrating that
example-based specifications can be viewed as the refinement types
first studied by Freeman and Pfenning [13]. Not only can refine-
ments be given direct semantics using standard, type-based logical
relations, but they can also be interpreted logically using the Curry-
Howard isomorphism. Program synthesis thereby becomes the task
of theorem-proving in intuitionistic logic, enabling us to exploit
decades of research into algorithms and data structures for doing
so efficiently (see Pfenning’s course notes for an overview [23]).
Furthermore, both type theory and logic suggest new ways to ex-
tend our specification language with more powerful mechanisms
than in traditional example-directed synthesis, giving users a wider
vocabulary with which to communicate intentions to the synthesizer.

We design a new theoretical framework for example-directed
synthesis from the ground up based on these insights. We encode
traditional examples with singleton types, function types, and
intersections and illustrate how to add unions—for more general
specifications—and negation—for counterexamples. While type
systems are usually presented in natural deduction style, theorem-
proving for intuitionistic logics often relies on sequent calculi.
Guided by the literature [23], we develop such a sequent calculus
and prove it sound (though not complete) with respect to a largely
standard natural-deduction type system [4, 7].

This is the author’s version of the work. It is posted here for your personal use. Not for
redistribution. The definitive version was published in the following publication:

POPL’16, January 20–22, 2016, St. Petersburg, FL, USA
c© 2016 ACM. 978-1-4503-3549-2/16/01...

http://dx.doi.org/10.1145/2837614.2837629

802

The dividends of this type-theoretic interpretation of examples
are more than just theoretical: we implement a new synthesis
engine built on these principles. Given a refinement, it uses focused
proof search in the sequent calculus to find an inhabitant over a
pure subset of ML with algebraic datatypes, structurally inductive
functions, and parametric polymorphism. It is also able to make use
of monomorphic library functions. Our synthesizer is competitive
with state-of-the-art example-directed systems, generating 51 simple
functional programs with refinements that correspond closely to
conventional “examples.” Furthermore, using the far richer language
of refinements, we were able to condense the specifications of 31 of
these programs, commonly seeing decreases of 10-20% compared
to previous work [22] (as measured in refinement abstract syntax
tree nodes). Those programs that could be rewritten polymorphically
saw even more dramatic reductions sometimes nearing 75%.

Although the sequent calculus and focusing remove many nonde-
terministic choices from the proof search process, the performance
of the system as a whole hinges on the manner in which we handle
those that remain. We evaluate four strategies for doing so, systemat-
ically exploring the design space using our formal understanding of
the underpinnings of our prototype synthesizer. These experiments
enable us to classify, validate, and explain the results of MYTH [22],
whose seemingly simple approach (forced upon it by theoretical
restrictions) proved to be most efficient in practice.

One of the limitations of our approach is that it is incomplete.
The system does not automatically generate new “helper functions”—
auxiliary recursive functions that take additional or different argu-
ments. It also does not infer instantiation of polymorphic library
functions, and the theoretical framework restricts the combination
of union and intersection types. These limitations suggest avenues
for future research based on this framework.

In summary, the central contributions of this work are:

• We observe and exploit the relationship between example-
directed program synthesis, refinement type systems, and in-
tuitionistic logic. (Section 2)
• We formalize a synchronized sequent calculus with intersec-

tion, union and singleton types to define the parameters of the
synthesis problem. We prove this sequent calculus to be sound
with respect to a more standard unsynchronized sequent calculus
and then relate the unsynchronized sequent calculus to a natural
deduction-style proof system. (Section 3)
• We develop a prototype implementation of our program synthe-

sis procedure that extends the core calculus with a variety of
additional features. We describe design choices and experimen-
tally analyze strategies for resolving the non-determinism of the
sequent calculus. We discuss methods for integrating existing
functions (libraries) into the synthesis process. We re-specify
existing benchmarks to demonstrate the practical benefits of
constraining synthesis problems with refinements. (Section 4)
• We reinterpret other example-directed synthesis systems through

the lens of refinements and proof search. (Section 5)

2. Synthesis with Refinements
2.1 What Are Examples?
Suppose we wish to describe the behavior of the list length
function using a series of examples as we might in any number
of example-directed synthesis frameworks. In accordance with the
function’s type, each example must specify a mapping from a list to
a natural number. For instance, we might say that length maps the
empty list [] to the number zero 0.

But, semantically, what exactly are these “examples?” We inter-
pret them as singleton types—types with exactly one inhabitant. For

instance, the type 0 contains only the value 0.1 When we attempted
to describe list length, however, we were not looking for inputs or
outputs in isolation. Instead, we sought a description of a function
that maps specific inputs to outputs. To do so, we can use a function
type in tandem with singletons: []→ 0.

Typically, we wish to combine more than one example when we
specify a function’s behavior. For instance, in addition to mapping
[] to 0, length also maps [1] to 1 and [2; 1] to [2]. In other words,
length satisfies the conjunction of three constraints:

[]→ 0 ∧ [1]→ 1 ∧ [2; 1]→ 2

In type theory, conjunction typically takes two possible forms:
intersection types and products. Since we want the same function to
satisfy all three constraints, we need an intersection.

In summary, a specification language with singleton types,
function types, and intersections captures the basic lexicon of
example-directed synthesis and serves as an effective starting point
for specifying function behavior using examples. Together, these
components form the basis of a refinement type system [13].

2.2 Synthesis By Example
Interpreting examples as refinements, synthesis is the task of search-
ing for an inhabitant of a type over this richer type system. The
Curry-Howard isomorphism suggests another reading: treat the type
as a theorem and search for a proof. Automated theorem-proving is
a well-studied problem with an expansive body of existing research
from which we can draw to design synthesis systems. While we
could attempt proof search over a conventional, natural-deduction
style inference system with rules for introduction and elimination
forms, doing so would require us to mix elements of forward and
backward search. In this paper, we instead choose to work over the
sequent calculus. A sequent 〈Γ ` r〉 e states that, given a goal
refinement r and a context Γ binding names to refinements, we can
synthesize the expression e. The sequent calculus uses left rules
to simplify assumptions in the context and right rules to advance
the goal. The left rules correspond to elimination forms, allowing
us to apply a function or project the elements of a pair. The right
rules allow us to construct our goal—i.e., introduce a lambda ex-
pression or a pair. This sequent formulation allows us to perform
pure bottom-up search.

To begin our running example, we specify an initial theorem-
proving problem for length below. The black square indicates a
hole that we would like to fill with a synthesized program.

let len = 〈· ` []→ 0 ∧ [1]→ 1 ∧ [2; 1]→ 2〉 �

Our first step is to apply the sequent calculus right rule for
intersection, which directs us to break up our refinement into
three separate sequents, or worlds, one for each constituent of our
larger refinement. Each of these worlds should generate the same
expression, which is the solution to the overall synthesis problem:

let len = 〈· ` []→ 0〉, 〈· ` [1]→ 1〉, 〈· ` [2; 1]→ 2〉 �

Since every goal refinement is at arrow type, we can apply the
right rule for arrows, synthesizing a function.

let len = fun x → 〈x : [] ` 0〉, 〈x : [1] ` 1〉, 〈x : [2; 1] ` 2〉 �

In creating a function, we have broken up our goal refinements into
separate argument and result components. The result part becomes
our new goal refinement, while the argument part is bound to a
variable that we add to the context—the argument of the function
we synthesized. Notice that x takes on a different value in every
world. We might read the first sequent as, “when x has type [], the
expression we synthesize should have type 0.”

1 Rather than use special syntax to distinguish a singleton type from its
corresponding value, we rely on context to do so.

803

At this point, our goals are all singleton refinements, granting
us a number of choices in how we proceed. In practice, making the
correct decision at this juncture in a performance-friendly manner
proved to be the most difficult aspect of designing our prototype
synthesizer. We spend the majority of Section 4 exploring this
question. In the context of list length, supposing that natural
numbers are defined as either zero (Z) or the successor of a natural
number (S nat), one option is to apply the right rule for sum types,
which would synthesize a constructor. Alternatively, we could try to
use a variable from the context to solve our synthesis goal.

Notice, however, that x takes on two different forms: in the first
world, it is the empty list, while in the second and third it contains an
element. We can apply the left rule for sum types, pattern matching
on x and creating one synthesis subproblem for each branch.

let len = fun x → match x with
| [] → 〈· ` 0〉 �1

| h :: t → 〈h : 1, t : [] ` 1〉, 〈h : 2, t : [1] ` 2〉 �2

When we pattern match, our worlds are partitioned between the two
synthesis subproblems depending on the value x takes on. Worlds
where x is the empty list are sent to the [] branch while worlds
where x is non-empty go to the other branch. The names created
from pattern-matching on x are added to the context in each world
and x is removed. If we need x later, we can always reconstruct it.

In the first branch, there is a lone world whose goal refinement is
a singleton. We can apply the right rule for sum types and synthesize
the singleton’s constructor, Z, to solve the synthesis problem. In the
second branch, too, each of the goal refinements shares the same
constructor, so we synthesize S and strip away one layer of the
constructor from each of the goal refinements.

let len = fun x → match x with
| [] → Z
| h :: t → S 〈h : 1, t : [] ` 0〉, 〈h : 2, t : [1] ` 1〉 �2

To solve the second branch, it would be useful to make a recursive
call to len. To do so, however, we need to add len and refinements
describing it to the context. Which refinements do we use? The
original synthesis problem, which is a specification of len that we
have already written. Once added, we can use the left arrow rule to
apply len to t in the context.2

let rec len = fun x → match x with
| [] → Z
| h :: t → S (let y = len t in
〈h : 1, t : [], y : 0 ` 0〉, 〈h : 2, t : [1], y : 1 ` 1〉 �2)

We let-bind the application to a fresh name, y, to ensure that our
context contains only variables. The application produces exactly
the refinements we need to solve our goal, so we use the sequent
calculus context rule to synthesize y and, finally, unwind the let-
binding to produce our result:

let rec len = fun x → match x with [] → Z | h::t → S (len t)

2.3 Richer Specifications
So far, we have seen that singletons, arrows, and intersections are
expressive enough to capture example-directed synthesis and specify
useful synthesis problems. Refinements, however, are not limited to
just these components—we can export many other features to our
synthesis specification language. We select two features in particular:
base types and unions. We treat any base type as a valid refinement,
meaning that we can describe, for example, the set of all non-empty
lists by writing Cons (nat × list). With unions, we can combine
arbitrary collections of refinements into larger types. For example,

2 For the sake of readability, we have elided len and its refinements from
each of the contexts.

we could write the type of even numbers less than five as 0 ∨ 2 ∨ 4.
This richer refinement language grants us new forms of expression
that can dramatically reduce the size of synthesis specifications for
large classes of problems:

Eliminating redundancy. Disjunction enables us to condense
cases of functions that map different inputs to the same output.
For example, without disjunction the decrement function could
be described with three cases: 0 → 0 ∧ 1 → 0 ∧ 2 → 1.
Using disjunction, we can merge the first two cases together into
(0 ∨ 1) → 0. When the arguments share constructors, we can
structurally push this disjunction into the argument itself, further
reducing the specification size. For instance, the lists [0; 1] and [0]
could be combined into Cons(0× (Nil ∨ Cons(1× Nil))).

Type refinements enable an even more powerful form of general-
ization, making it possible to express statements about all inhabitants
of a type that obey certain structural properties. When specifying
the list map function, we could write the higher-order argument that
maps every natural number to 0 as nat→ 0 rather than enumerat-
ing a list of cases. Similarly, we could write the function that tests
whether a number is equal to 1 (useful in the specification of list
filter) as (1→ true) ∧ ((Z ∨ S S nat)→ false).

Reducing excess information. Many specifications have more
information than is strictly necessary to synthesize the intended
function. For example, describing list length previously required
us to choose values for the contents of example lists ([2; 1] → 2)
even though these values have no impact on the result of the
function. Type refinements make it possible to express a form of
“weak polymorphism” ([nat; nat] → 2) where we are agnostic to
the particular inhabitants of a type. Other examples require the
synthesizer to differentiate between constructors but not explicit
values. To generate list unzip, the synthesizer needs to know only
that the structure of an example list is [S nat× Z; Z× S nat], with
different constructors, rather than any exact numbers, in each pair.

Simple properties. We can generalize much of the behavior of
many functions by writing simple properties into their refinements.
Consider the list nth function, which, given a list and an index,
returns an option containing either the item at that index (if the
list is long enough) or None (if the list is not). One property of
this function is that it will always return None on an empty list:
Nil→ nat→ None. It will do the same on a list of length 1 when
the index is greater than 0: Cons(nat× Nil) → S nat→ None.
These properties replace numerous instantiations as specialized to
particular lists or numbers, greatly reducing specification sizes.

Parametric polymorphism. In our implementation, we also pro-
vide polymorphism, which furthers many of the benefits already
discussed. Intuitively, synthesis benefits from the “free theorems”
that polymorphic types imply [28]. Based on type information alone,
we could even synthesize some programs, such as compose, without
any refinements at all in a manner similar to Djinn for Haskell [3].
For other programs, polymorphism reduces the degrees of freedom
available to a synthesizer, preventing it from introspecting into ab-
stracted types. This dramatically diminishes the size of the search
space that the synthesizer must explore while granting the user more
general specification mechanisms. Far smaller refinements could
describe polymorphic programs—in the case of list map, more than
66% smaller than with singletons alone.

2.4 Negation
Sometimes, the synthesizer fails to produce the program we want
on the first attempt. For instance, provided the description of list
length we crafted in Section 2.1 ([]→ 0∧ [1]→ 1∧ [2; 1]→ 2),
the synthesizer could generate the following:

let len = fun x → match x with [] → Z | h::t → h

804

This program, the list head function, conforms to our specification
and is even smaller than the program we were expecting—it is a
perfectly reasonable, if unexpected, result. We found this experience
to be quite common—synthesis is rarely a one-step process. Instead,
it involves multiple rounds of iteration as a user gradually refines a
specification until it is sufficiently precise.

Many existing synthesis systems provide for this contingency.
Flash Fill [14] allows users to correct erroneously transformed
spreadsheet cells, updating the synthesis specification with this
additional information. Counterexample-guided inductive synthesis
(CEGIS) [27] expects that the synthesizer will err and relies on this
process to slowly construct a specification. We offer a similar capa-
bility in the form of negation, which makes it possible to articulate
that a program is not an inhabitant of a particular refinement—
to write a counterexample. To appropriately constrain the synthe-
sizer on list length, for example, we might add the refinement
[0]→ not(0) to our specification. Internally, we normalize negation
into other refinements according to logical identities, meaning we
do not have to make provision for it in our synthesis procedure.

Like disjunction and type refinements, negation is convenient
shorthand that makes specifying programs easier. Yet it also enables
new modes of interaction with the synthesizer, facilitating the
iterative process of real-world synthesis and laying the groundwork
for type-directed CEGIS, in which we replace the user with an oracle
that drives synthesis with counterexamples.

3. Type Theory of Example-Directed Synthesis
In this section, we present the syntax and synthesis rules for a
lambda calculus with intersections, unions, singletons and other
basic type constructors—a type system sufficient to represent the
constraints imposed by example-based specifications. The technical
development proceeds in four stages. First, we present an (almost)
standard natural-deduction style type system drawn from the work
of Dunfield [7] and Barbanera [4]. This type system serves as the
foundation for our work, and corresponds to a familiar presentation
of the necessary type-theoretic constructs.

Second, we introduce an unsynchronized sequent calculus that
more closely mirrors our implementation in its use of bottom-up
left-rules rather than natural-deduction style top-down elimination
rules. This sequent calculus also generates terms in a more restricted
form—a kind of “A-Normal” form. Our A-Normal form represents
the step-by-step choices made by the synthesis algorithm. It has the
property that when let expressions are reduced, the resulting terms
will find themselves in eta-long, beta-normal form. We prove it
sound with respect to the natural deduction style formulation of the
system. However, because the sequent calculus is unsynchronized,
it suggests a proof strategy that uses more backtracking than is
necessary.

Hence, the third step of our development presents a synchronized
sequent calculus. This third calculus most closely resembles our
implementation, though the correspondence is not perfect: our imple-
mentation uses memoization, focusing and additional optimizations
that we have not formalized. We discuss these extensions informally
in Section 4. The last step shows how to integrate negative examples
into the system using a normalization procedure that transforms
refinement goals prior to beginning synthesis itself.

3.1 Step 0: Syntax
Figure 1 presents the basic syntactic elements of our language.
The refinements (r) we use include singleton refinements true and
false at base type together with function and pair refinements
(r1 → r2 and r1 × r2) at higher type. We generate more complex
refinements using the bottom (empty) refinement ⊥ as well as
intersections and unions. Contexts Γ map variables to refinements;
throughout this document, we maintain the invariant that no variable

(External Libraries) c ∈ Ψ
(Base Values) b ::= true | false
(Refinements) r ::= b | r1 → r2 | r1 × r2

| ⊥ | r1 ∧ r2 | r1 ∨ r2
(Values) v ::= c | b | λx.e | 〈v1, v2〉
(Expressions) e ::= x | c

| b | if e0 then e1 else e2
| λx.e | e1 e2
| 〈e1, e2〉 | π1 e | π2 e
| letx = e1 in e2

(Type contexts) Γ ::= · | Γ, x : r

Figure 1: Refinement Syntax

VJrK VJ⊥K = ∅
VJtrueK = {true}
VJfalseK = {false}
VJr1 → r2K = {v | ∀v1 ∈ VJr1K : v v1 ∈ EJr2K}
VJr1 ∧ r2K = VJr1K ∩ VJr2K
VJr1 ∨ r2K = VJr1K ∪ VJr2K
VJr1 × r2K = {〈v1, v2〉 : v1 ∈ VJr1K, v2 ∈ VJr2K}

EJrK EJrK = {e | e −→∗ v and v ∈ VJrK}

CJrK CJr1 → r2K = {c | ∀v1 ∈ VJr1K : I(c, v1) ∈ VJr2K}

Figure 2: Semantics of Refinements and Constants. I(c, v1) is a
function from constants and values to values. e −→∗ v is the
standard multi-step call-by-value operational relation.

appears more than once in Γ. The language of expressions e, and its
(call-by-value) semantics, are standard.

3.2 Step 1: Natural Deduction
Selected rules from the natural deduction-style formulation of our
type system appear in Figure 3. It comprises two judgement forms:
subtyping (r1 ≤ r2) and type checking (Γ ` e : r nd). There are
many ways to formulate subtyping. For concreteness, we use rules
from Dunfield’s thesis [7]; because they have limited bearing on
the remainder of our presentation they are elided. As is standard in
natural deduction, typing is formulated using introduction (I) and
elimination (E) rules. We elide the most familiar rules (those for
pairs and functions) and focus on intersections and unions:

• Intersections and pairs are both forms of conjunction. The
difference is that intersection uses the same proof term for
both conjuncts, without extra syntax introducing the intersection,
whereas pairs are introduced with new syntax and have separate
proof terms for each conjunct. From a type checking perspective
(when both types and expressions are supplied), intersections and
pairs are equally easy. From a synthesis perspective, intersections
are more challenging as one must find a single expression that
satisfies two constraints, as opposed to two separate expressions
that independently satisfy one constraint each.
• The elimination rules for unions are notoriously difficult. We

have chosen a rule drawn from [4]. This rule states that we must
first identify a subexpression e′ with union type r1 ∨ r2 and
replace it with x. If the new expression has type r under both
the hypotheses x : r1 and x : r2 then e[e′/x] also has type r.

The most interesting rule is that for constants (ND-SAMPLE).
Constants represent libraries of pre-existing code supplied before
synthesis is to begin. Typically, a pre-defined signature ascribes
a single type or refinement to each such constant. However, we

805

allow any refinement consistent with the operational semantics of
the constant to describe instance it is used. In practice, we use this
rule in two ways.

1. We type check each library function using a standard simple
type system and give it a refinement corresponding to its simple
type. This type structure suffices to synthesize the shape of the
eta-long, beta-normal forms that use the constant.

2. When necessary, we generate a concrete argument v and execute
c v. If the result is v′, we ascribe the refinement r → r′, where
r describes v and r′ describes v′, to the library function.

As an example, suppose a user supplies a library containing xor. It is
trivial to type check xor to deduce that it has the simple refinement
Bool → Bool→ Bool.3 The structural information in this simple
refinement suffices to guide a portion of our synthesis algorithm.
However, we may need to extract additional information about
xor to apply it during synthesis—its simple type may not suffice.
We do so by executing (sampling) it on well-typed arguments to
generate additional refinements. For instance, we could execute
xor true false, see that it returns true, and produce the refinement
true→ false→ true that is consistent with xor’s semantics. In our
implementation, we sample on-demand when additional refinements
could aid the proof search process, a technique that differentiates
our system from much past work on pure theorem proving.

3.3 Step 2: Unsynchronized Sequents
The move from natural deduction to the unsynchronized sequent
calculus is the first step towards a more algorithmic presentation
of proof search (program synthesis) strategy. We formalize this
system as a synthesis procedure with the form 〈Γ ` r〉 s unsync
which may be read as “Given a context Γ and a goal refinement
r, we synthesize a sequent-normal expression s.” Sequent-normal
expressions are a series of let expressions, each of which represents
the synthesis algorithm’s choice of which connective from the
context to deconstruct. For example, the expression letx2 =
x1 s1 in s2 represents the choice to try to apply x1 (which must have
function type) to some other normal form s1 and then to continue
with s2. The other sequent-normal forms are listed below.

s ::= x | true | false | if x then s1 else s2
| λx.s | letx2 = x1 s1 in s2
| 〈s1, s2〉 | let 〈x1,x2〉 = x in s
| letx = c in s

These expressions may be seen as a subset of the natural
deduction expressions by interpreting let 〈x1,x2〉 = x in s as an
abbreviation for letx1 = π1 x in letx2 = π2 x in s. Together, the
syntax and sequent calculus typing rules enforce the invariant that,
upon reduction of the let expressions, there are no further beta-
reductions in the expression and all expressions are in eta-long form.
For instance, the expression

λx.let 〈x1,x2〉 = x in letx3 = x1 x2 inx3

reduces to the beta-normal, eta-long expression λx.(π1 x) (π2 x)
Searching for eta-long, beta-normal expressions can cut down the
size of the synthesis search space by orders of magnitude.

Figure 4 presents the unsynchronized sequent calculus rules. For
each connective, there are right rules, corresponding to the natural
deduction introduction rules, and left rules, corresponding to (let-
bound) instances of the elimination rules. For example, the left rule
for pairs (U-LPAIR) shows how to deconstruct a hypothesis of the
form x : ra × rb. One does so by extracting the two components of
the pair (x1 and x2) and continuing the computation with two new
hypotheses x1 : ra and x2 : rb in the context.

3 Bool may be represented as true ∨ false in our formal setting.

The context rule (U-CTX) allows us to use a hypothesis from the
context so long as it has base type (true, false or a disjunction here).
This constraint is standard and forces terms into eta-long form—we
must decompose any complex types before use.

The sample rule (U-SAMPLE) inherits the properties of the natu-
ral deduction-style formulation in that any refinement r′ consistent
with the semantics of library function may be ascribed to c.

Soundness The unsynchronized sequent calculus is sound with
respect to the natural deduction type system.

Theorem 1 (Unsynchronized Sequent Calculus Soundness). If
〈Γ ` r〉 s unsync then Γ ` s : r nd.

A sketch of this proof appears in the extended version [12].

3.4 Step 3: Synchronized Sequents
While the unsynchronized sequent calculus is a concrete step toward
an implementation, a direct realization of these rules will lead
to significant backtracking and poor performance. For instance,
consider a use of the right intersection rule followed by the creation
of a function:

D
··

〈Γ,x : ra1 ` rb1〉 s

〈Γ ` ra1 → rb1〉 λx.s

E
··

〈Γ,x : ra2 ` rb2〉 s

〈Γ ` rb1 → ra2〉 λx.s

〈Γ ` ra1 → rb1 ∧ ra2 → rb2〉 λx.s

If our proof search strategy is to first finish D before starting on
E , we may waste effort synthesizing a complete program using D
that has a single subexpression inconsistent with E . Processing both
derivations simultaneously allows us to find errors earlier. Hence,
our synchronized strategy collects up constraints and pushes them
up the derivation tree in unison. Pictorially:

...
〈Γ,x : ra1 ` rb1〉, 〈Γ,x : ra2 ` rb2〉 s

〈Γ ` ra1 → rb1〉, 〈Γ ` ra2 → rb2〉 λx.s

〈Γ ` ra1 → rb1 ∧ ra2 → rb2〉 λx.s

In general, synchronized sequents have the form W s sync
whereW is a multi-set of worlds and each world w has the form
〈Γ ` r〉. The key constraint in the synchronized sequent calculus is
that all of the worlds generate exactly the same expression s. Hence,
one barrier to achieving synchronization arises in processing the
U-LAND rule. Here the difficulty is that, in order to synthesize
s[x], an expression containing one variable x, U-LAND generates
a subproblem requiring synthesis of s[x1,x2], a term that contains
two other variables, x1 and x2 in place. More generally, we may
generate many structurally similar subproblems that differ only in
the use of certain identifiers

w1 s[x1,x2] unsync
··

w1 s[x3,x4] unsync
··

w s unsync

To avoid this issue, the synchronized sequent calculus eliminates the
stand-alone left rules for intersection. Instead, we define a projection
operation (r1 B r2) that extracts a left or right component of an
intersection, and use that operation4 whenever a hypothesis is drawn
from the context. Projection from the context and then use of a
hypothesis in rule R is equivalent to bottom-up use of a series
of LAND rules followed by R. This projection is sound, but does
introduce an incompleteness. Consider the S-LOR rule: when r0 has

4 or subsumption, which is a generalization of projection, but which intro-
duces more non-determinism when there is no bound on the supertype.

806

Γ ` e : r nd

ND-VAR
x : r ∈ Γ

Γ ` x : r nd

ND-SAMPLE
c ∈ CJrK

Γ ` c : r nd

ND-TRUE

Γ ` true : true nd

ND-FALSE

Γ ` false : false nd

ND-BOT
Γ ` e′ : ⊥ nd

Γ ` e : r nd

ND-SUB
Γ ` e : r1 nd r1 ≤ r2

Γ ` e : r2 nd

ND-ITE-TRUE
Γ ` e0 : true nd Γ ` e1 : r nd

Γ ` if e0 then e1 else e2 : r nd

ND-ITE-FALSE
Γ ` e0 : false nd Γ ` e2 : r nd

Γ ` if e0 then e1 else e2 : r nd

ND-ANDI
Γ ` e : r1 nd Γ ` e : r2 nd

Γ ` e : r1 ∧ r2 nd

ND-ANDE1
Γ ` e : r1 ∧ r2 nd

Γ ` e : r1 nd

ND-ANDE2
Γ ` e : r1 ∧ r2 nd

Γ ` e : r2 nd

ND-ORI1
Γ ` e : r1 nd

Γ ` e : r1 ∨ r2 nd

ND-ORI2
Γ ` e : r2 nd

Γ ` e : r1 ∨ r2 nd

ND-ORE
Γ ` e′ : r1 ∨ r2 nd (x 6∈ Γ) Γ,x : r1 ` e : r nd Γ,x : r2 ` e : r nd

Γ ` e[e′/x] : r nd

Figure 3: Selected Natural Deduction Typing Rules

〈Γ ` r〉 s unsync

U-CTX
x : r′ ∈ Γ r′ ≤ r r ≤ true ∨ false

〈Γ ` r〉 x unsync

U-TRUE
true ≤ r

〈Γ ` r〉 true unsync

U-FALSE
false ≤ r

〈Γ ` r〉 false unsync

U-BOT
x : ⊥ ∈ Γ

〈Γ ` r〉 s unsync

U-ITE-TRUE
x : true ∈ Γ 〈Γ ` r〉 s1 unsync

〈Γ ` r〉 if x then s1 else s2 unsync

U-ITE-FALSE
x : false ∈ Γ 〈Γ ` r〉 s2 unsync

〈Γ ` r〉 if x then s1 else s2 unsync

U-RARROW
x 6∈ Γ 〈Γ,x : ra ` rb〉 s unsync

〈Γ ` ra → rb〉 λx.s unsync

U-LARROW
x1 : r1 → r2 ∈ Γ 〈Γ ` r1〉 s1 unsync x2 6∈ Γ 〈Γ,x2 : r2 ` r〉 s2 unsync

〈Γ ` r〉 letx2 = x1 s1 in s2 unsync

U-RAND
〈Γ ` r1〉 s unsync 〈Γ ` r2〉 s unsync

〈Γ ` r1 ∧ r2〉 s unsync

U-LAND
x : ra ∧ rb ∈ Γ x1,x2 6∈ Γ 〈Γ,x1 : ra,x2 : rb ` r〉 s unsync

〈Γ ` r〉 s[x/x1][x/x2] unsync

U-ROR1
〈Γ ` r1〉 s unsync

〈Γ ` r1 ∨ r2〉 s unsync

U-ROR2
〈Γ ` r2〉 s unsync

〈Γ ` r1 ∨ r2〉 s unsync

U-LOR
〈Γ,x : r1, Γ′ ` r〉 s unsync 〈Γ,x : r2, Γ′ ` r〉 s unsync

〈Γ,x : r1 ∨ r2, Γ′ ` r〉 s unsync

U-RPAIR
〈Γ ` ra〉 s1 unsync 〈Γ ` rb〉 s2 unsync

〈Γ ` ra × rb〉 〈s1, s2〉 unsync

U-LPAIR
x : ra × rb ∈ Γ x1,x2 6∈ Γ 〈Γ,x1 : ra,x2 : rb ` r〉 s unsync

〈Γ ` r〉 let 〈x1,x2〉 = x in s unsync

U-SAMPLE
c ∈ CJr′K x 6∈ Γ 〈Γ,x : r′ ` r〉 s unsync

〈Γ ` r〉 letx = c in s unsync

Figure 4: Unsynchronized Sequent Calculus

the form ra∧(r1∨r2) the projection loses information about ra. We
conjecture that if the natural deduction system allowed distribution
of conjunction over disjunction this restriction could be lifted.

Formally, the synchronized sequent calculus is defined in Fig-
ure 5. In this system, when viewed bottom up, the right rule for
intersection and the left rule for union add new worlds/constraints
to be satisfied. Intersections and unions can progress independently
in different worlds, but processing connectives such as pairing, func-
tions and booleans, whose introduction and elimination are marked
in the expressions, must happen in sync. For example, S-RARROW
introduces a new hypothesis to all worlds simultaneously.

The synchronized sequent calculus is sound with respect to the
unsynchronized calculus. We carried out the proof in two stages,
using an intermediate calculus that is unsynchronized but has the
same kind of projections as appear in the synchronized calculus. The
extended version [12] includes a paper proof, but we did significant
(but incomplete) verification in Coq.5

5 We did not formalize substitution and alpha-conversion mechanically, but
merely admitted such properties where necessary unchecked.

Theorem 2 (Synchronized Sequent Calculus Soundness).

• If 〈Γ ` r〉 s sync then 〈Γ ` r〉 s unsync.

3.5 Step 4: Negation
To integrate negation, we augment the refinement language with an
additional operator, not(r). Intuitively, this refinement denotes any
value (with the same simple type) that is not described by r. In the
context of synthesis from examples, this feature is most useful in
an iterative workflow. Specifically, after the system synthesizes a
function, the user executes it on some new data r1 and receives an
unexpected result r2. The user can re-run the synthesis procedure
with the additional refinement r1 → not(r2). By replacing the user
with a verification oracle, this process becomes CEGIS.

Rather than integrate negation into our synthesis procedure
directly, we normalize it into other refinements before synthesis
begins. In some cases, however, our refinement language is not
powerful enough to fully capture the result of doing so. For instance,
consider not(nat→ true), where nat describes all natural numbers.
Intuitively, we need a refinement that specifies that there exists some

807

r1 B r2 Γ ` x : r prj

PRJ-REFL

r B r

PRJ-LEFT
r1 B r

r1 ∧ r2 B r

PRJ-RIGHT
r2 B r

r1 ∧ r2 B r

PRJ
x : r′ ∈ Γ r′ B r

Γ ` x : r prj

W s sync

S-CTX
∀〈Γ ` r〉 ∈ W : (x : r′ ∈ Γ ∧ r′ ≤ r ∧ r ≤ true ∨ false)

W x sync

S-RARROW
x 6∈ Γ1, . . . , Γn 〈Γ1,x : ra1 ` rb1〉 · · · 〈Γn,x : ran ` rbn〉 s sync

〈Γ1 ` ra1 → rb1〉 · · · 〈Γn ` ran → rbn〉 λx.s sync

S-LARROW
∀i ∈ n : Γi ` x1 : rai → rbi prj

〈Γ1 ` ra1〉 · · · 〈Γn ` ran〉 s1 sync x2 6∈ Γ1, . . . , Γn 〈Γ1,x2 : rb1 ` r1〉 · · · 〈Γn,x2 : rbn ` rn〉 s2 sync

〈Γ1 ` r1〉 · · · 〈Γn ` rn〉 letx2 = x1 s1 in s2 sync

S-BOT
Γ ` x : ⊥ prj W s sync

W〈Γ ` r〉 s sync

S-RAND
W〈Γ ` r1〉〈Γ ` r2〉 s sync

W〈Γ ` r1 ∧ r2〉 s sync

S-ROR1
W〈Γ ` r1〉 s sync

W〈Γ ` r1 ∨ r2〉 s sync

S-ROR2
W〈Γ ` r2〉 s sync

W〈Γ ` r1 ∨ r2〉 s sync

S-LOR
r0 B r1 ∨ r2 W〈Γ,x:r1, Γ′ ` r〉〈Γ,x:r2, Γ′ ` r〉 s sync

W〈Γ,x:r0, Γ′ ` r〉 s sync

S-TRUE
∀〈Γ ` r〉 ∈ W : true ≤ r
W true sync

S-FALSE
∀〈Γ ` r〉 ∈ W : false ≤ r
W false sync

S-ITE
∀〈Γ ` r〉 ∈ W1 : Γ ` x : true prj ∀〈Γ ` r〉 ∈ W2 : Γ ` x : false prj W1 s1 sync W2 s2 sync

W1W2 if x then s1 else s2 sync

S-SAMPLE
∀i ∈ n : c ∈ CJr′iK x 6∈ Γ1, . . . , Γn 〈Γ,x : r′1 ` r1〉 · · · 〈Γ,x : r′n ` rn〉 s sync

〈Γ1 ` r1〉 · · · 〈Γn ` rn〉 letx = c in s sync

S-RPAIR
〈Γ1 ` ra1〉 · · · 〈Γn ` ran〉 s1 sync
〈Γ1 ` rb1〉 · · · 〈Γn ` rbn〉 s2 sync

〈Γ1 ` ra1 × rb1〉 · · · 〈Γn ` ran × rbn〉 〈s1, s2〉 sync

S-LPAIR
∀i ∈ n : Γi ` x : rai × rbi prj x1,x2 6∈ Γ1, . . . , Γn 〈Γ1,x1 : ra1,x2 : rb1 ` r1〉 · · · 〈Γn,x1 : ran,x2 : rbn ` rn〉 s sync

〈Γ1 ` r1〉 · · · 〈Γn ` rn〉 let 〈x1,x2〉 = x in s sync

Figure 5: Synchronized Sequent Calculus

(Refinements) r ::= . . . | not(u)
(Negated Refinements) u ::= true | false | u× u | t→ u

| ⊥ | u ∧ u | u ∨ u | not(u)
(Singletons) t ::= true | false | t1 × t2
(Types) τ ::= Bool | τ1 × τ2 | τ1 → τ2

Figure 6: Negation Syntax

natural number n that maps to false. Unfortunately, while we have
finitary unions, we do not have infinitary unions (i.e., existentials).
This problem arises whenever we negate a function whose argument
refinement has infinitely many inhabitants. Hence, we only permit
negation of functions whose argument refinements are singletons.
This choice covers the common case of interest, rejecting concrete
mappings such as true→ false.

Formally, we present the extended grammar in Figure 6. Here, u
ranges over refinements that may be negated and t over singletons.
We also define the sub-grammar of types, which describe the
“universe” with respect to which we negate a refinement.

We eliminate negation prior to synthesis using a normalization
function (N) presented in Figure 7. Normalization is a partial
function mapping a refinement and a type to a refinement; it
fails to produce an output in cases where the refinement and type
are incompatible. The type argument is necessary to clarify the
result of not(⊥), which would otherwise be ambiguous. On non-

N (true, Bool) = true
N (false, Bool) = false
N (⊥, τ) = ⊥
N (u1 ∧ u2, τ) = N (u1, τ) ∧N (u2, τ)
N (u1 ∨ u2, τ) = N (u1, τ) ∨N (u2, τ)
N (u1 × u2, τ1 × τ2) = N (u1, τ1)×N (u2, τ2)
N (u1 → u2, τ1 → τ2) = N (u1, τ1)→ N (u2, τ2)
N (not(true), Bool) = false
N (not(false), Bool) = true
N (not(⊥), τ) = τ
N (not(u1 ∧ u2), τ) = N (not(u1), τ) ∨N (not(u2), τ)
N (not(u1 ∨ u2), τ) = N (not(u1), τ) ∧N (not(u2), τ)
N (not(not(u)), τ) = N (u, τ)
N (not(u1 × u2), τ1 × τ2) = N (not(u1), τ1)× τ2 ∨

τ1 ×N (not(u2), τ2)
N (not(t→ u), τ1 → τ2) = t→ N (not(u), τ2)

Figure 7: Negation NormalizationN : u× τ → u

negated inputs, the functionN recursively normalizes a refinement’s
constituents. On negated inputs, it applies logical identities to
eliminate negation or push it onto smaller subterms. For example,
not(true) becomes false. Likewise, we use DeMorgan’s laws to
negate conjunction and disjunction. not(⊥) becomes the type
argument and double negation cancels out.

808

(Types) τ ::= α | B | unit
| τ1 → τ2 | τ1 × ... × τm

(Refinements) r ::= B> | B⊥ | C r | unit> | unit⊥

| r1 × ... × rm | r1 → r2
| r1 ∧ r2 | r1 ∨ r2 | not(r) | α | αn

(Expressions) e ::= x | () | C e

| match e with Ci x→ ei
i∈m

| 〈e1, ..., em〉 | πi e
| fix f x.e | e1 e2

Figure 8: Surface Refinement and Expression Syntax

4. Implementation
The previous section defines the parameters for a synthesis pro-
cedure for a pure subset of ML. Building on this foundation, we
have implemented a refinement-based synthesis engine from the
ground up in approximately 4,000 lines of F#. This synthesizer gen-
erates polymorphic, structurally inductive, higher-order functional
programs with algebraic datatypes. It uses the Curry-Howard iso-
morphism to treat an input refinement as a theorem to be proved,
performing focused proof search over the sequent calculus to find a
program that satisfies the specification. In the following sections, we
discuss key features of our prototype and experiments assessing its
performance. Our evaluation benchmarks are a library of synthesis
problems similar to exercises assigned in an introductory functional
programming class. To the extent possible, we use tests from Osera
and Zdancewic [22] (with “examples” converted into refinements)
to provide a clear basis for comparison between systems. Where
necessary, we have added benchmarks to pinpoint relevant qualities
of our implementation.

4.1 Language Extensions
Our implementation extends the formal language described in
Section 3 significantly (see Figure 8). In particular, it includes
recursive ML-style data types, such as lists and trees, as well as
structurally inductive functions, and n-ary tuples. It also handles
ML-style prenex polymorphism exclusively on the right, meaning
users can specify polymorphic refinements as goals but that we
cannot yet sample polymorphic libraries.

Each data type (B) has a “top” refinement (B>) describing
elements of the data type as well as a “bottom” refinement (B⊥),
describing none. A singleton refinement is created using a datatype
constructor (C). For example, suppose the type of natural numbers
is nat. We write the top refinement for natural numbers as nat>

and the bottom refinement as nat⊥. Other refinements for natural
numbers are created using the constructors for successor (S) and
zero (Z). We can build singleton refinements (S (S Z)—the number
2) or non-singletons (S (S nat>)—all numbers greater than or
equal to 2) from these components. The implementation refinement
language also includes intersections, unions, and negation.

To describe the behavior of a polymorphic function, we provide
abstract refinements (αn) representing distinct inhabitants of a
polymorphic type (α), which itself is a valid refinement that captures
all of its inhabitants (just as Z represents one inhabitant of nat).
As is standard in ML, such refinements are implicitly universally
quantified at the top-level. For instance, to specify a polymorphic
map over lists, we write the following.

(α1 → β1)→ ([]→ [] ∧ [α1]→ [β1] ∧ [α1;α1]→ [β1;β1])

Abstract refinements relay a great deal of information—the above
specification is sufficient to synthesize list map.

The syntax of expressions is generalized to include constructors,
pattern matching (as opposed to simple conditionals), n-ary tuples

(Normalized n ::= B> | ∨(Ci ni
i∈m

) | α | ∨(αi
i∈m)

Refinements) | unit> | unit⊥

| ∨(n(i,1) × . . .× n(i,k)
i∈m

)

| ∧(∨(n(i,j,1) → n(i,j,2)
j∈ni)

i∈m
)

Figure 9: Normalized Refinement Syntax

and recursive functions. We reduce the let expressions in the sequent-
normal forms and return synthesized expressions in eta-long, beta-
normal-form to the user (Figure 8 elides these details).

We require that a recursive function be structurally decreasing
on its argument with a syntactic check similar to those found in
Coq and Agda, ensuring that we never generate a non-terminating
program. To enforce this rule, we permit recursive calls only on
variables that result from pattern-matching on a function’s argument.
To generate a recursive function, we demand that refinements be
trace complete. That is, when [2; 1] is an argument refinement, the
synthesizer also needs refinements involving the arguments [1] and
[] to clarify the results of structurally recursive calls. This limitation,
which is also present in MYTH [22], serves as a the example-based
equivalent of a loop invariant for recursive function specifications.

4.2 Refinement Preprocessing
The flexibility of the refinement language is a key benefit for users
but a significant challenge for the implementer. By translating the
surface syntax into a more restrictive form, we can streamline
the internals of the synthesizer and improve performance using
techniques like hash-consing. There are two stages of the translation:

1. Negation normalization. Negation is eliminated according to the
procedure in Section 3.5 (with additional rules for the refinement
language in Figure 8). Since this step has already been treated in
depth, we do not discuss it further here.

2. Refinement normalization. Nested conjunction and disjunction
are collapsed and then pushed through other refinements where
possible, ensuring that they only appear in specific places.

The internal refinement syntax processed by the synthesizer
appears in Figure 9. Specifically, we permit unions of constructor
refinements (provided no constructor is repeated), unions of tuples,
arrows in conjunctive normal form (CNF), and unions of abstract
refinements. We achieve this normal form by using logical identities
and observing that intersection and union can be pushed through
some of the other refinements.

For instance, at base type, we merge intersections and unions
of common constructors. Hence, a disjunct of constructors such as
(S Z) ∨ (S S Z) is normalized to S (Z ∨ S Z). Likewise, (S nat>)∧
(S Z) is normalized to S Z. If we encounter an inconsistent refine-
ment such as S Z∧ Z, the normalization procedure simply produces
the appropriate bottom refinement. If bottom appears in goal posi-
tion, the system signals the user that specification is inconsistent.
The same logic guides the normal form for abstract refinements.

We can apply similar kinds of reasoning to other refinements.
For instance, since (r1a × r1b) ∧ (r2a × r2b) is equivalent to
(r1a ∧ r2a)× (r1b ∧ r2b), we can push intersection (but not union)
through tuples, leaving its normal form as a union of tuples. In
addition, we can push intersection through union (and vice versa)
by distributing. Neither operator can be pushed through arrows, so
we put arrows in CNF by pushing union through intersection.6

6 We chose CNF to ensure that, during synthesis, we process conjunction,
which is both left and right invertible, before disjunction, which is only left
invertible. See Section 4.3 for a full discussion of invertibility.

809

cases of decrement
0→ 0 1→ 0 2→ 1

0 goals
in each
world

0
1

(a) Initial Board

0→ 0 1→ 0 2→ 1

0
0
1

(b) Cases Eliminated

0 0 1 1
0 1 0 1
2 2 2 2

(c) Refinement Directed Search

0 ∨ 1
0 ∨ 1

2

(d) Disjunction
Enumeration

nat
nat
nat

(e) Type
Enumeration

Figure 10: Argument Sudoku for Decrement

4.3 Focused Proof Search
In order to search for inhabitants of a refinement, we iteratively
increase the depth of our derivation in a breadth-first manner until
we arrive at a solution, ensuring that we find the smallest possible
term (by depth) that satisfies our goal. We also periodically deepen
the maximum allowed match statement depth and the scrutinee size;
both metrics have a significant influence our search procedure’s
branching factor and must be carefully managed to avoid an early
explosion in search space size.

To improve the performance of our theorem-prover, we ex-
ploit the well-known fact that certain logical rules are invertible—
applying the rule without back-tracking does not cause us to lose
completeness. For example, when our goal refinement is an arrow,
we can always apply the corresponding right rule and immediately
generate a function without loss of completeness. The right rules
for pairs and intersections are also invertible, as are the left rules for
unions, pairs and intersections. In general, whenever we have the
opportunity to apply an invertible rule, we do so eagerly, reducing
the number of ways of interleaving synthesis rules and wringing
nondeterminism out of the synthesis process. In cases where no
invertible rules are applicable (i.e., disjunction and base type on the
right) we branch, simultaneously trying all rules that might apply
(i.e., pattern matching, using terms from the context, etc.).

Focusing [2] is a generalization of these invertibility principles
that makes it possible to chain together a series of non-invertible
rules without losing completeness. For instance, even though arrow
is not invertible on the left, we can focus on a function f :
r1 → r2 → r3 in the context and apply several instances of the
left arrow rule in sequence—we do not have to backtrack at every
individual application. When we reach an arrow in the context,
we always choose to continue focusing rather than immediately
search for possible arguments. Where arguments will eventually
appear, we instead leave holes to be filled in later: let f2 =
f (�1 : r1) in let f3 = f2 (�2 : r2) in f3 : r3. We handle
polymorphism in a similar manner, eagerly focusing on a prenex-
quanitifed type on the right and instantiating all type parameters at
the very beginning of the synthesis process.

4.4 Argument Selection
The focused proof search process, which comprises the core of our
synthesis algorithm, leaves unspecified the method for filling in ar-
guments of functions in the context. At this point in the proof search
process, the sequent calculus becomes highly nondeterministic, sup-
plying little guidance for how to pick arguments efficiently. The
performance of the system as a whole hinges on the algorithm for
selecting arguments, so we discuss this process in detail, weighing
the benefits and tradeoffs of five different strategies.

4.4.1 Argument “Sudoku.”
Suppose we are trying to find arguments for the unary decrement
function, which has the refinement 0→ 0 ∧ 1→ 0 ∧ 2→ 1.
We can imagine the process of doing so as a game not unlike
sudoku (Figure 10a). Each column represents a different “case”
of decrement (i.e., 1 → 0). 7 Each row represents a different
world, where the refinements listed along the right edge of the
box are the goal refinements that we need to satisfy. The aim of
argument-selection sudoku is simple: synthesize an expression that
typechecks against the argument refinement of one case in every
row such that the corresponding output refinements are subtypes the
goal refinements. An obvious first step is to eliminate all cases that
are not subtypes of the goal (Figure 10b), leaving only the task of
searching a now-smaller space for arguments.8

4.4.2 Strategy 0: Naive, Refinement-Directed Search
The proof theory from Section 3 suggests that we should create
synthesis subproblems for every combination of cases that might
produce the goal. In sudoku terms, we pick one box from each row
and search for an argument that satisfies those constraints. Since
we look for terms by depth in a breadth-first manner, we must
examine all possible combinations of boxes simultaneously. Figure
10c shows all of the synthesis subproblems we need to create for
the list decrement example in Figure10b. For instance, the first
column in Figure 10c represents the choice of box 1 from row 1
(demanding we find an expression refined by 0), box 1 from row
2 (demanding we find another expression refined by 0), and box 3
from row 3 (demanding we find an expression refined by 2).The
benefit of this approach is that we never have to check our answer:
assuming that the synthesis algorithm is sound, any argument we
find is guaranteed to lead to an application that satisfies our goal.

In the example of the decrement function, this algorithm
seems manageable, producing four subproblems, but the number
of combinations grows exponentially on functions with more cases
and multiple arguments. This problem is particularly severe during
the unconstrained search for match statement scrutinees. In practice,
this strategy could generate list length but was unable to synthesize
even the unary sum function.

4.4.3 Enumerative Search
As an alternative approach, instead of picking boxes first and then
searching for candidates, we might find candidates first and then
check to see whether they satisfy a box from each row.9 There are
several benefits to this enumerative approach:

1. Enumeration strategies do not inherently suffer from the same
combinatorial explosion as does refinement-directed search
(though some still do).

2. We can process multiple arguments effectively by searching
for one argument at a time. Any first argument we choose will
likely fail to satisfy many cases, which we can immediately cross
off to narrow down the search space for the next argument. Of
course, the first candidate we generate may not lead to a useful
application if, for instance, it creates an impossibly difficult

7 In general, the cases of a function need not be the same in every world,
but assuming so simplifies this particular example. When synthesizing a
recursive function, the same refinement is placed in the context of every
world, so this situation does arise quite often in practice.
8 When searching for match statement scrutinees, we must amend the game
slightly since there are no goal refinements. Instead, we may attempt to
pattern match on the result of any valid application and cannot eliminate any
cases initially.
9 To check that a candidate argument conforms to a refinement, we simply
typecheck it. We cache all typechecking queries to avoid repeating work.

810

benchmark libraries strat. 1 strat. 2 strat. 3 strat. 4 strat. 1 strat. 2 strat. 3 strat. 1 strat. 2 strat. 3 strat. 4
synthesis time s synthesis time % enumeration cache hit %

bool-band 0.16 0.16 0.16 0.16 100.6 100.6 100.0 — — — —
bool-bor 0.16 0.16 0.16 0.16 100.6 100.6 101.9 — — — —
bool-impl 0.16 0.16 0.16 0.16 100.0 101.3 100.0 — — — —
bool-neg 0.16 0.16 0.16 0.16 100.0 100.0 100.6 — — — —
bool-xor 0.16 0.16 0.17 0.16 99.4 99.4 102.5 — — — —
list-append 0.27 0.26 0.27 0.23 114.7 114.3 116.0 0.0 0.0 0.0 9.6
list-concat append 0.29 0.29 0.29 0.28 102.1 100.7 103.2 83.1 83.1 83.1 84.0
list-dict-contains 0.64 0.62 0.66 0.27 236.4 229.4 244.1 3.4 4.0 3.4 16.4
list-dict-find 0.41 0.37 0.42 0.25 167.2 150.2 169.2 3.1 4.2 3.1 9.6
list-dict-replace 1.11 1.01 1.15 0.33 340.7 308.9 351.4 2.7 3.5 2.7 12.2
list-drop 0.46 0.46 0.48 0.26 177.3 176.2 185.8 0.0 0.0 0.0 12.3
list-even-parity 0.30 0.29 0.32 0.26 114.7 113.6 122.5 0.0 0.0 0.0 26.9
list-filter 0.79 0.53 0.89 0.29 274.6 184.7 310.8 4.7 11.3 4.7 27.2
list-filter-3 timeout 0.54 0.91 0.30 timeout 182.8 307.4 5.9 12.1 6.1 25.3
list-fst 0.22 0.22 0.22 0.22 100.5 101.9 102.3 0.0 0.0 0.0 11.5
list-hd 0.17 0.17 0.18 0.17 100.0 100.0 101.1 — — — —
list-inc 0.22 0.23 0.22 0.22 100.4 100.9 99.1 28.0 28.0 28.0 28.0
list-last 0.23 0.23 0.23 0.22 104.9 102.7 104.9 0.0 0.0 0.0 12.9
list-length 0.22 0.21 0.22 0.22 100.5 99.1 100.9 0.0 0.0 0.0 13.6
list-map 0.31 0.29 0.32 0.24 128.4 118.9 132.1 5.1 8.2 5.1 19.0
list-map-2 timeout 0.30 0.34 0.25 timeout 120.2 136.5 0.1 9.3 6.1 17.9
list-map-3 timeout 0.31 0.38 0.26 timeout 121.4 146.3 5.0 10.5 7.5 19.8
list-map-4 timeout 0.32 0.40 0.25 timeout 126.5 157.7 4.8 10.2 7.2 19.8
list-nth 0.45 0.46 0.48 0.26 176.1 180.4 186.7 0.0 0.0 0.0 14.8
list-rev append 3.95 3.85 4.19 3.87 102.0 99.4 108.2 91.9 91.9 91.9 92.6
list-rev fold 0.32 0.32 0.32 0.32 99.7 100.3 99.7 86.9 86.9 86.9 86.9
list-rev snoc 0.30 0.30 0.30 0.30 101.3 100.3 102.0 82.3 82.3 82.3 83.2
list-rev-tailcall 0.34 0.34 0.35 0.25 135.9 134.7 138.2 8.0 8.0 8.0 21.2
list-snoc 0.28 0.29 0.29 0.24 119.8 121.1 122.8 0.0 0.0 0.0 11.9
list-insertion-sort insert 0.32 0.32 0.33 0.32 100.6 100.3 102.8 82.0 82.0 82.0 83.3
list-sorted-insert compare 2.11 2.09 2.19 1.02 207.7 204.8 214.7 8.7 8.7 8.7 38.0
list-stutter 0.22 0.22 0.22 0.21 101.9 102.3 103.3 0.0 0.0 0.0 12.1
list-sum add, fold 0.38 0.37 0.37 0.38 100.3 99.5 99.5 93.2 93.2 93.2 93.2
list-take 27.36 27.49 0.81 0.30 9274.9 9318.6 272.9 0.0 0.0 0.0 14.4
list-tl 0.18 0.18 0.18 0.18 99.4 100.0 99.4 — — — —
list-tuple-sum add 0.37 0.37 0.38 0.36 102.8 101.9 105.2 85.5 85.5 85.5 88.4
list-tuple-swap 0.22 0.22 0.22 0.22 100.9 101.4 101.4 0.0 0.0 0.0 11.1
list-unzip 0.23 0.23 0.23 0.22 103.2 104.1 105.9 12.8 12.8 12.8 25.4
nat-dec 0.16 0.16 0.16 0.16 100.6 100.6 100.0 — — — —
nat-div2 0.22 0.21 0.22 0.21 104.9 103.9 105.4 0.0 0.0 0.0 15.1
nat-iseven 0.21 0.21 0.21 0.20 103.5 103.0 104.0 0.0 0.0 0.0 14.6
nat-max 0.21 0.21 0.21 0.21 100.5 100.5 100.0 19.3 19.3 19.3 19.3
nat-sum 0.24 0.24 0.24 0.21 116.0 115.5 116.5 0.0 0.0 0.0 9.1
tree-binsert compare 4.55 4.80 4.73 1.81 251.4 265.2 261.4 8.0 8.0 8.0 37.3
tree-collect-leaves append 0.55 0.56 0.55 0.53 104.2 105.9 105.3 93.8 93.8 93.8 94.6
tree-count-leaves sum 0.38 0.38 0.38 0.37 102.2 102.2 102.7 90.0 90.0 90.0 90.4
tree-count-nodes sum 0.45 0.46 0.46 0.45 99.1 102.0 102.0 91.1 91.1 91.1 92.3
tree-inorder append 0.53 0.54 0.54 0.53 99.1 101.5 102.3 93.8 93.8 93.8 94.6
tree-map 0.31 0.28 0.32 0.24 128.8 115.6 132.5 0.1 2.9 0.1 14.6
tree-postorder append 14.32 14.20 15.47 14.53 98.5 97.7 106.5 96.8 96.8 96.8 97.1
tree-preorder append 0.46 0.45 0.46 0.44 105.5 104.1 105.7 92.8 92.8 92.8 93.7

Figure 11: Performance of the four enumerative argument search strategies on all benchmarks. Tests timed out if no solution was found
after 100 seconds. The left section contains synthesis times in seconds. The center section contains relative synthesis times as percentages
of the synthesis time using strategy 4. The right section contains enumeration cache hit percentages. Missing entries signify cases where
no enumeration took place during the synthesis process. Entries in the libraries column were provided the listed libraries during synthesis.
Benchmarks were measured on an Amazon EC2 m4.large instance with 8GB of RAM using mono.

search space for the second argument. As such, we must continue
to enumerate even after we find one candidate.

3. Enumeration queries are readily cacheable. We save the results
of every enumeration query at a particular depth with goal
refinement r and context Γ for each world, ensuring that we
never do the same enumeration work twice.

The key choice when designing an enumerative search strategy
is that of the size and shape of the space over which to search.
Although a notion of search space size is standard, shape is less
so. Refinements tend to produce search spaces of irregular shapes,
such as 1 ∨ 2 ∨ 3, that are less likely to entirely coincide with one
another than are types such as nat. In the sections that follow, we
describe and evaluate four variants of enumerative search that trade
off between these two metrics. Figure 11 displays the synthesis times

811

and enumeration cache hit percentages of each of these strategies
on our suite of benchmarks.

Strategy 1: Disjunction-based enumeration. When enumerating
arguments, we can exploit all of the refinement information available
to constrain our search space. To do so, we observe that intersection
of function cases on the left corresponds to disjunction of arguments
on the right. That is, in the first row of the sudoku game, our search
space is 0 ∨ 1, the disjunction of the argument refinements of
every case in consideration. We can apply this disjunction rule
to every world, producing the smallest search space attainable with
the refinement information available (Figure 10d).

Unfortunately, the shape of this search space makes it extremely
difficult to traverse. We cannot push disjunction through tuple and
arrow refinements, forcing our enumeration process to branch and
consider every combination of cases. This process degenerates
to naive, refinement-directed search and experiences the same
combinatorial explosion of subproblems. We see evidence of this
phenomenon in Figure 11—many of the higher-order tests timed out.
We attempted to synthesize four variants of list map and two of list
filter. Benchmarks list-map and list-filter did not require
the synthesizer to find a higher-order argument and completed
quickly. Benchmarks list-map-n and list-filter-n forced
the synthesizer to search for a higher-order argument described
by a refinement with n cases. The disjunction-based enumeration
approach timed out when n was as small as 2.

Strategy 2: Hybrid enumeration. Still, the disjunction-based enu-
meration strategy is not entirely without merit. We can push dis-
junction through base type refinements, skirting the case explo-
sion at higher types. We tested a hybrid approach, which uses the
disjunction-based strategy at base type and simply enumerates all
well-typed terms at higher types. This approach performed better, but
struggled in some cases where constructors stored tuples (i.e., Cons
in lists). Disjunction pushed through these constructors would arrive
at the tuples inside, still creating some of the difficult-to-traverse
disjunction that this strategy sought to avoid. The list-take bench-
mark in particular continued to see poor performance as a product
of this limitation.

Strategy 3: Unsound disjunction-based enumeration. We can
eliminate disjunction completely by pushing it through tuples and
arrows in an unsound manner. For example, we might convert the
refinement (1 × 2) ∨ (3 × 4) into (1 ∨ 3) × (2 ∨ 4). Although
the second refinement includes several inhabitants that were not
described by the first, this search space is still far smaller than that
of nat × nat. The performance of this approach was consistent
across all benchmarks, avoiding the pathological cases of the other
disjunction-based approaches. For example, list-take, which did
not benefit from hybrid enumeration, performed dramatically better
once disjunction could be pushed through the tuples of its lists.

Strategy 4: Type-based enumeration. As a seemingly naive final
attempt, we enumerated all expressions at the argument type (Figure
10e). This is the strategy that Osera and Zdancewic, who were unable
to invert function examples and had no choice but to guess all well-
typed arguments, pursued [22]. This search space has the largest
possible size but the most uniform shape: we search the same space
for any two arguments of the same type. Surprisingly, ignoring
all refinement information and pursuing this strategy performed
convincingly better than any refinement-based approach.

Search space shape and cache performance. The results of the
previous section might seem surprising: why does enumerating over
the massive search space of a type perform better than doing so over
a space constrained by refinements? As we have already discussed,
part of our answer is that some spaces are easier to traverse than

others. The remainder is that the irregular shapes of the refinement-
constrained search spaces make their results harder to cache.

As noted previously, we cache the results of every enumeration
query. Enumerating over the language of types has a larger granu-
larity that improves the chance we will make the same query twice
and get a cache hit. In Figure 11, we confirm that every refinement-
based enumeration strategy sees a lower cache-hit percentage in line
with the finer granularity of its specification language. It is far less
likely that two refinement queries will be identical: the refinement
language is far more flexible, permitting a wider range of search
space shapes. Furthermore, refinement-based enumeration queries
must be world-aware, taking into account varying refinement in-
formation across multiple worlds. In contrast, type information is
shared from world to world, meaning that queries differing only
between worlds look identical to the cache. Cache hit percentages
did not vary greatly amongst the refinement-based strategies, indi-
cating minor differences in the structure of refinements did little
to improve cache performance. We conclude that, to fully explain
the performance of different enumeration strategies, and, thereby,
the performance of the system of a whole, we need to consider the
shapes, not just the sizes, of their search spaces.

4.5 Key optimizations.
Caching and hash-consing. The synthesizer spends most of its
time on the repetitive tasks of term-enumeration, evaluation, and
typechecking. We cache these queries so that the same work is
never done twice. To use theses caches, however, we need to be
able to hash deeply-nested refinements, expressions, and types. In
early testing, the bottleneck of the synthesis process was refinement
hashing and equality checking. By hash-consing these datastructures,
we memoize much of this work.

Eta-long sidestepping. The sequent calculus naturally generates
expressions in eta-long, beta-normal form. This property, which
cuts down the search space size by eliminating some equivalent
programs, sometimes leads us to synthesize programs that are
larger than necessary. For example, it is far easier to enumerate
to the depth necessary to generate the function type variable f
than the expression λx.f x, yet the sequent calculus will always
lead to the latter. During argument-selection, we opt for the shorter
representation where possible, reducing the number of enumeration
steps necessary to produce tuple and function variables.

4.6 Library Sampling
The synthesis algorithm as described suffices for self-contained prob-
lems expressed as refinements, but we also aim to import external
library code provided in the form of expressions. The sampling rule
for the natural deduction system, which serves this purpose in the
theory, is extraordinarily powerful: it states that we can extract any
refinement that describes a library. As discussed in Section 3.2, it is
impossible to implement this rule in its full generality. Instead, we
make use of a library’s type information and its behavior when eval-
uated. This restriction means that we can generate the refinements
nat> → nat> and S Z→ Z for the decrement function but never
S S nat> → S nat>. We have implemented two sampling strategies
which balance precomputation with refinement size. Neither strat-
egy is yet capable of sampling polymorphic libraries which, as the
equivalent of universal quantification on the left, require sampling
on both types and terms.

Ahead-of-time sampling. In ahead-of-time sampling, we produce
massive input-output tables for each library by generating arguments,
evaluating, and recursively sampling the arguments. This strategy
allows us to share work between many synthesis problems by import-
ing already-sampled libraries on demand. Generating these tables is
tremendously expensive, and we failed to build tables large enough

812

to run many of our library-centric tests. These tables are cumber-
some to manage during synthesis: every candidate argument must be
typechecked against a vast number of cases. This strategy therefore
performs especially poorly when combined with disjunction-based
argument selection strategies.

Just-in-time sampling. In practice, our synthesis procedure needs
a few specific samples rather than a comprehensive list of every case.
Just-in-time sampling samples on demand during the argument-
selection phase of the synthesis process, extracting only the informa-
tion we need for a particular synthesis problem. When we generate
a candidate argument, we evaluate the library on the argument to
produce an output refinement.

The challenge in doing so is that arguments may contain subex-
pressions that are described only in terms of refinements rather than
expressions, making standard evaluation impossible. For example,
we might attempt to evaluate length on the variable x refined by
Cons(S Z× list>), which provides too little information to con-
struct an output refinement. Our procedure therefore makes a best
effort to evaluate refinements as far as they correspond to values,
extracting tuples and constructors and treating arrow refinements as
tables from inputs to outputs. When evaluation cannot continue, the
candidate argument is rejected. This process is no more restrictive
than ahead-of-time sampling, which can only generate tables con-
taining singleton refinements. Refinement evaluation automatically
fails when faced with refinements like nat>, which can be unfolded
infinitely, potentially preventing evaluation from terminating.

Just-in-time sampling amounts to another instance of enumer-
ation like that employed for argument selection. It most closely
resembles Strategy 4 from Section 4.4, in which we generate and
check (this time by evaluation) all well-typed arguments in increas-
ing order of size. As in Section 4.4, doing so is the most expensive
part of the synthesis process. For an illustrative example, consider
the performance of the tree preorder, inorder, and postorder
benchmarks in Figure 11, which traverse a tree and return the values
stored in each node in a list ordered as the names suggest. These
tests are provided with the append library, which allow the func-
tions to appropriately merge lists produced from recursive calls to
left and right subtrees. The preorder test finishes most quickly,
since it requires a single append of the results of the recursive calls:

Cons(this value , append recur left recur right)

The inorder test requires slightly longer, since it must apply
append to a larger second argument:

append recur left (Cons(this value , recur right))

Where preorder and inorder still finish in approximately half a
second each, postorder takes more than an order of magnitude
more time to complete. It must make a second, nested call to append,
requiring two separate sampling procedures and a bigger argument
for the outer append:

append recur left (append recur right [this value])

These subtle changes in the ordering and number of library calls
demonstrate the extent to which the enumeration underlying sam-
pling dominates the performance of the synthesizer.

4.7 Practical Impact of Richer Specifications
For the user, the key dividend of this paper is a richer specification
language with union, negation, and polymorphism. To evaluate
the practical impact of this syntax, we updated a subset of our
benchmarks to make aggressive use of these new constructs. Our
benchmark suite, drawn primarily from Osera and Zdancewic [22],
is specified with the restrictive syntax of its origin: singletons,
arrows, and intersection. In Figure 12, we assess the extent to which
our wider vocabulary enables us to describe the same programs

benchmark orig. disj. poly. disj. poly.
refn ast nodes refn %

bool-band 33 23 — 69.7 —
bool-bor 33 23 — 69.7 —
bool-impl 33 24 — 72.7 —
list-append 106 103 88 97.2 83.0
list-concat 113 107 — 94.7 —
list-dict-contains 82 73 63 89.0 76.8
list-dict-find 102 100 63 98.0 61.8
list-dict-replace 222 207 110 93.2 49.5
list-drop 146 73 59 50.0 40.4
list-filter 189 153 66 81.0 34.9
list-fst 54 46 40 85.2 74.1
list-hd 26 17 14 65.4 53.8
list-inc 86 18 — 20.9 —
list-last 50 46 23 92.0 46.0
list-length 45 28 28 62.2 62.2
list-map 112 90 38 80.4 33.9
list-nth 124 114 51 91.9 41.1
list-snoc 181 181 46 100.0 25.4
list-insertion-sort 122 98 — 80.3 —
list-stutter 55 46 43 83.6 78.2
list-take 197 137 67 69.5 34.0
list-tl 32 29 26 90.6 81.3
list-tuple-swap 64 58 46 90.6 71.9
list-unzip 76 70 58 92.1 76.3
nat-dec 20 18 — 90.0 —
nat-div2 40 35 — 87.5 —
nat-iseven 27 23 — 85.2 —
tree-collect-leaves 111 101 — 91.0 —
tree-count-leaves 155 126 — 81.3 —
tree-count-nodes 108 86 — 79.6 —
tree-inorder 104 90 — 86.5 —

Figure 12: Reduction in refinement sizes using new specification
features. The left section contains refinement sizes of the original
benchmark suite, updates using disjunction and negation, and
updates using polymorphism. The right section contains refinement
sizes as percentages relative to the original refinements. Changes in
synthesis times due to these enhancements were negligible.

with smaller specifications. Since refinements lack a notion of an
“example,” we measure our results in refinement AST nodes. On
a subset of programs updated with union and negation, reductions
ranged from marginal to nearly 80%, with drops of 10-20% most
common. Several noteworthy features of programs that made these
reductions possible were detailed with examples in Section 2.3.

With polymorphism, a subset of cases see especially dramatic
improvement. Polymorphism prevents the synthesizer from decom-
posing the elements of the refinement lists, narrowing the range of
programs it can consider and thereby reducing the complexity of the
refinement necessary to specify the one we want. For example, in the
non-polymorphic list-dict benchmarks, which treat lists of nat
pairs as dictionaries, the synthesizer attempted to increment or decre-
ment keys and values rather than construct the expected dictionary
operations. Designing a working specification required carefully
selected patterns of numbers to prevent the synthesizer from doing
so. With polymorphism, the keys and values could remain abstract,
facilitating a more natural refinement.

Correspondingly, polymorphic examples make it possible to
concisely generalize about the behavior of a function on all cases
in ways that are impossible with singletons or disjunction. The
refinement for map from Section 4.1 is more than 66% smaller than
that from Osera and Zdancewic and 57% smaller than what we could
achieve even with disjunction and negation.

813

Although polymorphism alone is not powerful enough to write
the kinds of generalized loop invariants that would replace the
need for refinement trace completeness as described in Section 4.1,
the richer specification language makes it possible to write simple
properties (the list nth function always returns None on an empty
list) that subsume many examples that trace completeness would
otherwise demand (Nil→ nat→ None).

The programs we tested in this experiment were selected because
they were amenable to specification size reduction. In examples
where we struggled to decrease refinement sizes, there were several
features that made doing so difficult or impossible.

• Required full information. Many functions needed all informa-
tion contained in a singleton, preventing us from using disjunc-
tion or negation to reduce the information content of a refinement.
This was especially true of mathematical functions (natural num-
ber sum) and those requiring comparison (tree insert).
• Complex properties. Other functions had properties that could

not be conveyed even in the richer specification language.
Expressing that sum always produces its second argument when
its first is 0 requires dependency, as does noting that xor returns
false when its arguments are equal.
• Minimal useful redundancy. Some functions lacked redundancy

that we could exploit. List snoc, which appends an element onto
the end of a list, works in the opposite direction of the Cons
constructor, making arguments difficult to structurally merge.
List snoc did prove to be a beneficiary of polymorphism.

5. Related Work
So far, we have presented a framework that interprets synthesis
with examples as the type inhabitation problem over a refinement
type system. In addition to suggesting efficient implementation
strategies, this foundational approach captures traits common to
existing example-directed synthesis work. In this section, we survey
the research literature to make these connections concrete.

MYTH [22] was a significant inspiration for this work, as it
demonstrated that (simple) type- and example-directed search for
the eta-long, beta-normal forms of small functional programs was
tractable. The major difference between the two pieces of work is
that MYTH considers examples to be a syntactically distinct class
from types. It defines productive rules for decomposing examples,
but fails to make a direct connection to the literature on intersection
types and intuitionistic logic. This link explains why the MYTH
synthesis system works efficiently. In their introduction, Osera and
Zdancewic note informally that the intuition behind their system is
an effort to “enumerate [programs] during evaluation” rather than
to “enumerate [programs] and then evaluate [them].” The difference
between these two strategies is formalized in the distinction between
the synchronized and unsynchronized sequent calculi. Furthermore,
the connection to refinement types allows our system to provide
a specification language extending beyond MYTH’s “examples.”
We demonstrated that these features allow users to specify their
intentions more compactly than in MYTH. MYTH’s synthesizer
relies on natural deduction, although some rules were modified in
sequent calculus style with focusing [11]. We apply these ideas to
the entire framework.

Polikarpova and Solar-Lezama’s work on SYNQUID [24] also
uses refinement types to synthesize functional programs. SYNQUID
includes dependent and polymorphic types, but not unions. A key
contribution of the work is an algorithm for synthesis of polymorphic
instantiations. In contrast to the work here, the authors do not
connect their type system to intuitionistic logic or demonstrate how
to interpret examples as type-based specifications.

ESCHER [1] also synthesizes programs using examples but
operates over an untyped, Lisp-like language. Nevertheless, the
system uses a form of forward search, generating terms in order of
increasing size and checking whether they agree with any examples.
This search strategy corresponds closely to a bottom-up reading
of our rules. Furthermore, their SPLITGOAL rule which, given an
expression that partially satisfies the examples, searches for another
that satisfies the remainder and a boolean guard that partitions the
example space accordingly, corresponds precisely to a bottom up
reading of our if rule S-ITE along with disjunction refinements.

Several systems, such as λ2 [9] and FLASHEXTRACT [20], push
examples through applications of specific functions using custom
axioms. For example, if the code we are to synthesize contains a use
of map e, then specialized axioms set up a new goal for e, without
having to “sample” from (i.e., execute) map. We could likely add
custom refinement checking rules for specific, built-in functions
in a similar manner, though we have not done so. More generally,
these systems do not make the connection to type refinements, but
it would be interesting to investigate the interactions between such
rewriting axioms and our refinements in the future.

Systems such as IGORII [17] and MAGICHASKELLER [16]
perform example rewriting as part of their synthesis processes. Their
primary mode of rewriting finds the least general generalization
of the examples via antiunification and turns the sub-components
where the examples differ into synthesis subproblems. They do not
make an explicit connection with type refinement systems.

Scherer’s work [26] on type inhabitation as program synthesis
uses logical techniques similar to ours—focusing and proof search
to find inhabitants of a type—but specifications are limited to simple
types and polymorphism. Our work demonstrates how we can
integrate additional forms of specification, namely examples via
refinements. INSYNTH [15] is similar in that they also study type
inhabitation as program synthesis without examples. To distinguish
between likely and unlikely candidate functions, they introduce a
ranking system with weights derived from emperical analysis of
large corpuses of code. It seems likely that such ranking heuristics
could be used in conjunction with our system.

Rehof studied the synthesis of programs through the lens of type
inhabition of a finite combinatory logic with intersection types [25].
He uses intersection types in conjunction with semantic types to
provide a rich specification language for synthesis in a system called
CLS [6]. However, whereas our work employs intersection types
in conjunction with singletons to provide an example-based specifi-
cation language, their work focuses on a type-based logical specifi-
cation language. Furthermore, the domains of the respective works
are vastly different. CLS is limited to component-based synthesis—
typed function symbols and applications of those symbols—whereas
we synthesize programs with a larger range of program features, in
particular, pattern matching over algebraic data types.

All of the related work discussed so far has interacted only with
positive examples. In contrast, our system is capable of dealing with
negative examples, i.e., counterexamples. Counterexamples are at
the heart of the CEGIS algorithm [27] that powers solver-based
synthesizers such as SKETCH [27] and LEON [18]. The key differ-
ence between our approach and theirs is where the counterexamples
originate: we require the user to supply them whereas the solvers
that power SKETCH and LEON generate these counterexamples
automatically as part of a CEGIS loop.

We owe much to past work on refinement type systems such as
those of Freeman and Pfenning [13], Davies [5], Dunfield [7, 8] and
others. We also borrow from the work of Barbanera [4], who defines
natural deduction and sequent calculi for intersections and unions,
though he does not use such systems for synthesis or evaluate their
performance as theorem provers. Since his sequent calculus contains
cut, it is less useful for automated proof search.

814

6. Future Work
Refinement extensions. Although we have expanded the vocabu-
lary of example-directed synthesis to include a far richer and more
general collection of constructs, there are a veriety of other compo-
nents that we might adopt from type theory. Dependent types and
refinements would allow us to write more expressive specifications
than those descripted in Section 2.3. Similarly, we might add true
base types — integers, floating point numbers, and strings — with
corresponding theories integrated into the refinement system.

Library intake. Although we focus mainly on self-contained syn-
thesis problems, real-world synthesis systems need the ability to
make use of libraries of existing code. The approaches for doing so
developed in this paper remain primitive, enumerating arguments for
library functions in hopes that the proper expression will eventually
be discovered. These strategies can only use libraries in cases where
the candidate arguments are described by refinements that corre-
spond to values, since evaluating a library on any other argument is
impossible. Furthermore, the prototype is incapable of integrating
polymorphic libraries, since doing so requires enumerating type
parameters before doing the same for arguments. A more power-
ful library-intake system might make use of symbolic execution
(rather than evaluation) to produce more general and descriptive
refinements for libraries.

Intelligent proof search. Much of Section 4 explores methods for
coping with the enormous nondeterminism inherent in the sequent
calculus even after employing focusing and invertibility. Strategy 0,
the naive refinement-directed search, fails because the synthesizer
faces an overwhelming number of branches to explore in a breadth-
first manner. Attempting even to visit each branch once proves
prohibitively expensive. Rather than attempting to deviate from
Strategy 0, perhaps we should instead reconsider the premise of
performing breath-first search over the space of candidate programs.
One such avenue would be to build a learning theorem-prover that
intelligently pursues particular paths first based upon context and
past experience, an approach that might make seemingly vast search
spaces more tractable to traverse. This information could even be
gleaned by examining repositories of existing code to prioritize
programs that are more likely to be written in practice.

Acknowledgments
We would like to thank the anonymous reviewers for their comments
and feedback on our work. This work was supported in part by the
NSF under awards CCF-1138996 and CNS-1111520.

References
[1] A. Albarghouthi, S. Gulwani, and Z. Kincaid. Recursive program

synthesis. In Computer Aided Verification, pages 934–950, 2013.
[2] J.-M. Andreoli. Logic programming with focusing proofs in linear

logic. Journal of Logic and Computation, 2(3):297–347, 1992.
[3] L. Augustsson. [haskell] announcing djinn, version 2004-12-11, a

coding wizard. Mailing List, 2004. http://www.haskell.org/
pipermail/haskell/2005-December/017055.html.

[4] F. Barbanera, M. Dezaniciancaglini, and U. Deliguoro. Intersection
and union types. Information and Computation, 119(2):202–230, June
1995.

[5] R. Davies. A practical refinement-type checker for standard ml.
[6] B. Düdder, M. Martens, and J. Rehof. Staged composition synthesis.

In Programming Languages and Systems - 23rd European Symposium
on Programming, ESOP 2014, Held as Part of the European Joint Con-
ferences on Theory and Practice of Software, ETAPS 2014, Grenoble,
France, April 5-13, 2014, Proceedings, pages 67–86, 2014. . URL
http://dx.doi.org/10.1007/978-3-642-54833-8_5.

[7] J. Dunfield. A unified system of type refinements. PhD thesis, Carnegie
Mellon University, 2007.

[8] J. Dunfield and F. Pfenning. Tridirectional typechecking. pages 281–
292, 2004.

[9] J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure
transformations from input-output examples. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2015.

[10] K. Fisher, D. Walker, K. Q. Zhu, and P. White. From dirt to shovels:
Fully automatic tool generation from ad hoc data. 2008.

[11] J. Frankle. Type-directed synthesis of products, Oct. 2015. URL
http://arxiv.org/abs/1510.08121.

[12] J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic. Example-
directed synthesis: A type-theoretic interpretation (extended version).
Technical Report MS-CIS-15-12, University of Pennsylvania, 2015.

[13] T. Freeman and F. Pfenning. Refinement types for ML, volume 26.
ACM, 1991.

[14] S. Gulwani. Automating string processing in spreadsheets using input-
output examples. In ACM SIGPLAN Notices, volume 46, pages 317–
330. ACM, 2011.

[15] T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion
using types and weights. In Proceedings of the 2013 ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), 2013.

[16] S. Katayama. An analytical inductive functional programming system
that avoids unintended programs. In Proceedings of the ACM SIGPLAN
2012 Workshop on Partial Evaluation and Program Manipulation,
PEPM ’12, pages 43–52, New York, NY, USA, 2012. ACM. ISBN
978-1-4503-1118-2.

[17] E. Kitzelmann. A Combined Analytical and Search-based Approach to
the Inductive Synthesis of Functional Programs. PhD thesis, Fakulät für
Wirtschafts-und Angewandte Informatik, Universität Bamberg, 2010.

[18] V. Kuncak, M. Mayer, R. Piskac, and P. Suter. Complete functional
synthesis. In Proceedings of the 31th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’10, 2010.

[19] T. Lau. Programming by Demonstration: a Machine Learning Ap-
proach. PhD thesis, University of Washington, 2001.

[20] V. Le and S. Gulwani. Flashextract: A framework for data extraction by
examples. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14. ACM,
2014.

[21] Microsoft Corporation. Microsoft by the numbers, 2015. URL http:
//news.microsoft.com/bythenumbers/ms_numbers.pdf.

[22] P.-M. Osera and S. Zdancewic. Type-and-example-directed program
synthesis. In Proceedings of the 36th ACM SIGPLAN Conference on
Programming Language Design and Implementation. ACM, 2015.

[23] F. Pfenning. Automated theorem proving, 2004. URL http://www.
cs.cmu.edu/~fp/courses/atp/index.html.

[24] N. Polikarpova and A. Solar-Lezama. Program synthesis from poly-
morphic refinement types, Oct. 2015.

[25] J. Rehof and P. Urzyczyn. Finite combinatory logic with intersection
types. In L. Ong, editor, Typed Lambda Calculi and Applications,
volume 6690 of Lecture Notes in Computer Science, pages 169–183.
Springer Berlin Heidelberg, 2011. ISBN 978-3-642-21690-9. . URL
http://dx.doi.org/10.1007/978-3-642-21691-6_15.

[26] G. Scherer and D. Rèmy. Which simple types have a unique inhabitant?
In Proceedings of the 18th ACM SIGPLAN International Conference
on Functional Programming (ICFP), 2015.

[27] A. Solar-Lezama. Program Synthesis by Sketching. PhD thesis,
University of California, Berkeley, 2008.

[28] P. Wadler. Theorems for free! In Proceedings of the fourth international
conference on Functional programming languages and computer
architecture, pages 347–359. ACM, 1989.

815

